
भारतीय मानक
Indian Standard

© BIS 2021

भारतीय मानक ब्यूरो
B U R E A U O F I N D I A N S TA N D A R D S

मानक भवन, 9 बहादरुशाह ज़फर मार्ग, नई िदल्ली – 110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG

NEW DELHI-110002
           www.bis.gov.in   www.standardsbis.in

यूनिफाइड डाटा एक्सचेंज
भाग 2 ए पी आई स प्ेसिफिकेशंस

Unified Data Exchange
Part 2 API Specifications

ICS 33.020, 35.020

IS 18003 (Part 2) : 2021

June 2021	� Price Group 14

http://www.bis.gov.in
http://www.standardsbis.in

FOREWORD

This Indian Standard (Part 2) was adopted by the Bureau of Indian Standards, after the draft finalized by the Smart
Infrastructure Sectional Committee, had been approved by the Electronics and Information Technology Division
Council.

This standard is one of the series of Indian Standards on Unified data exchange. Other standards published so far
in the series are:
		 Part 1 	 Architecture

The Composition of the panel, LITD 28/P12 and the sectional committee, LITD 28 responsible for the formulation
of this standard is given at Annex F.

Smart Infrastructure Sectional Committee, LITD 28

IS 18003 (Part 2) : 2021

i

Contents

Pages

	 0	 INTRODUCTION	 ...	 viii

	 1 	 SCOPE	 ...	 1

	 2 	 REFERENCES	 ...	 1

	 3 	 TERMINOLOGY AND ABBREVIATIONS	 ...	 2

	 3.1 	 Terminology	 ...	 2
	 3.2 	 Abbreviations	 ...	 2

	 4 	 DATA EXCHANGE API INTERFACES	 ...	 2

	 5 	 CATALOGUE SERVICE INTERFACE	 ...	 4

	 5.1 	 Catalogue Information Model	 ...	 4
	 5.1.1	 General	 ...	 4
	 5.1.2	 Catalogue Items and Item Types	 ...	 5
	 5.1.3	 Relationship between catalogue item types	 ...	 6
	 5.1.4 	 Catalogue data types	 ...	 6
	 5.1.5 	 Schemas for DX catalogue item types	 ...	 6
	 5.1.6 	 Representation of catalogue entities	 ...	 6
	 5.2 	 DX Catalogue APIs	 ...	 9
	 5.2.1	 General	 ...	 9

	 5.2.1.1	 Discovery interface	 ...	 9
	 5.2.1.1.1	 Attribute/Property Search	 ...	 9
	 5.2.1.1.2 	 Geo-spatial search	 ...	 9
	 5.2.1.1.3 	 Text search	 ...	 9
	 5.2.1.1.4 	 Get Document by ID	 ...	 9
	 5.2.1.1.5 	 List based on type	 ...	 9
	 5.2.1.1.6 	 Relationship search based on relationship type	 ...	 9

	 5.2.1.2 	 Management Interface	 ...	 9
	 5.2.1.2.1 	 Create Item	 ...	 9
	 5.2.1.2.2 	 Update Item	 ...	 9
	 5.2.1.2.3 	 Delete Item	 ...	 9
	 5.2.1.2.4 	 Get Item	 ...	 9

	 5.2.2	 API Endpoints	 ...	 9
	 5.2.2.1	 API Endpoint: /item	 ...	 9

	 5.2.2.1.1 	 API Response	 ...	 10
	 5.2.2.2 	 API Endpoint: /search	 ...	 10

	 5.2.2.2.1 	 API Response	 ...	 11

IS 18003 (Part 2) : 2021

ii

	 5.2.2.3 	 API Endpoint: /list	 ...	 11
	 5.2.2.3.1 	 API Response	 ...	 11

	 5.2.2.4 	 API Endpoint: /relationship	 ...	 11
	 5.2.2.4.1 	 API Response	 ...	 11

	 5.2.3 	 API Authorization	 ...	 11
	 5.2.4 	 Query Semantics and API Parameters	 ...	 11

	 5.2.4.1 	 Property Search Semantics and Parameters	 ...	 11
	 5.2.4.2	 Geo-spatial Search Query Semantics and Parameters	 ...	 12
	 5.2.4.3 	 Fuzzy Text Search Semantics and Parameters	 ...	 13
	 5.2.4.4 	 Complex Search Semantics and Parameters	 ...	 13
	 5.2.4.5 	 List Entities Semantics and Parameters	 ...	 13
	 5.2.4.6 	 Relationship Query Semantics and Parameters	 ...	 13
	 5.2.4.7 	 Limits and Filters	 ...	 14

	 5.2.5 	 DX-CAT Object Definitions	 ...	 14
	 5.2.5.1 	 DX-CAT-Success-Response-Search	 ...	 14
	 5.2.5.2 	 DX-CAT-Success-Response-List	 ...	 14
	 5.2.5.3 	 DX-CAT-Success-Response-Create-Update-Delete	 ...	 14

	 5.2.5.3.1 	 DX-CAT-Manage-Response	 ...	 14

	 6	 RESOURCE ACCESS SERVICE INTERFACE	 ...	 14

	 6.1	 Resource Access APIs	 ...	 14
	 6.1.1	 General	 ...	 14
	 6.1.2 	 Functionality	 ...	 15

	 6.1.2.1 	 Latest Data Search	 ...	 15
	 6.1.2.2 	 Temporal Search	 ...	 15
	 6.1.2.3 	 Spatial Search	 ...	 15
	 6.1.2.4 	 Attribute Search	 ...	 15
	 6.1.2.5 	 Complex Search	 ...	 15
	 6.1.2.6 	 Filters	 ...	 15
	 6.1.2.8 	 Data Ingestion	 ...	 15

	 6.1.3 	 API Endpoints	 ...	 16
	 6.1.3.1 	 API Endpoint: /entities	 ...	 16

	 6.1.3.1.1 	 API Response	 ...	 16
	 6.1.3.2 	 API Endpoint: /temporal/entities	 ...	 16

	 6.1.3.2.1 	 API Response	 ...	 17
	 6.1.3.3 	 API Endpoint: /entityOperations/query	 ...	 17

	 6.1.3.3.1	 API Response	 ...	 17
	 6.1.3.4 API Endpoint: /temporal/entityOperations/query	 ...	 18

	 6.1.3.4.1 	 API Response	 ...	 18
	 6.1.3.5 	 API Endpoint: /subscriptions	 ...	 18

	 6.1.3.5.1 	 API parameters	 ...	 19
	 6.1.3.5.2 	 API Response	 ...	 19

� Pages

IS 18003 (Part 2) : 2021

iii

	 6.1.4 	 Query Semantics and API Parameters	 ...	 19
	 6.1.4.1 	 Geo-spatial Search	 ...	 19
	 6.1.4.2 	 Temporal Search	 ...	 20
	 6.1.4.3 	 Attribute Search	 ...	 21
	 6.1.4.4 	 Complex Search	 ...	 21
	 6.1.4.5 	 Response Filtering	 ...	 21
	 6.1.4.6 	 Query pagination	 ...	 21
	 6.1.4.7 	 Counting the Number of Results	 ...	 21
	 6.1.4.8 	 API parameters	 ...	 21

	 6.1.5 	 DX-RS Object definitions	 ...	 21
	 6.1.5.1 	 DX-RS-Success-Response-Search	 ...	 22
	 6.1.5.2 	 DX-RS-Success-Response-Delete	 ...	 23
	 6.1.5.3 	 DX-RS-Success-Response-Subscription	 ...	 23
	 6.1.5.4 	 DX-RS Error-Response	 ...	 23
	 6.1.5.5 	 DX-RS-ReqBody-Search	 ...	 23
	 6.1.5.6 	 DX-RS-ReqBody-Subscription	 ...	 24
	 6.1.5.7 	 DX-RS-Subscription-Params	 ...	 24

	 7 	 AUTHORIZATION SERVICE INTERFACE	 ...	 24

	 7.1 	 Authorization Service APIs	 ...	 24
	 7.1.1 	 General	 ...	 24

	 7.1.1.1	 User Profile	 ...	 24
	 7.1.1.2 	 Policy	 ...	 24
	 7.1.1.3 	 Authorization Token	 ...	 24

	 7.1.2 	 Authorization Service Object Definitions	 ...	 25
	 7.1.2.1 	 DX-AS-UserProfile-Entity	 ...	 25
	 7.1.2.2 	 DX-AS-Policy-Entity	 ...	 25
	 7.1.2.3 	 DX-AS-Token-Entity	 ...	 25
	 7.1.2.4	 DX-AS-TIP-Req	 ...	 26
	 7.1.2.5 	 DX-AS-UserProfile-Success-Resp	 ...	 26
	 7.1.2.6 	 DX-AS-Policy-Success-Resp	 ...	 26
	 7.1.2.7 	 DX-AS-Token-Success-Resp	 ...	 26
	 7.1.2.8 	 DX-AS-Error-Response	 ...	 26
	 7.1.2.9 	 DX-AS-TIP-Success-Response	 ...	 27

	 7.1.3	 API Specifications	 ...	 27
	 7.1.3.1 	 Endpoint: /user/profile	 ...	 27

	 7.1.3.1.1 	 Create/Update User Profile	 ...	 27
	 7.1.3.1.2 	 Read User Profile	 ...	 28
	  7.1.3.1.2.1  API Responses	 ...	 28

	 7.1.3.2 	 Endpoint: /policies	 ...	 28
	 7.1.3.2.1 	 Create/Update Policies	 ...	 28
	  7.1.3.2.1.1  API Responses	 ...	 28

� Pages

IS 18003 (Part 2) : 2021

iv

	 7.1.3.2.2	 Read Policies	 ...	 29
	  7.1.3.2.2.1  API Responses	 ...	 29
	 7.1.3.2.3 	 Delete Policies	 ...	 29
	  7.1.3.2.3.1  API Responses	 ...	 29

	 7.1.3.3 	 Endpoint: /tokens	 ...	 29
	 7.1.3.3.1 	 Create Method: POST	 ...	 29
	 7.1.3.3.2 	 Read Method: GET	 ...	 30
	 7.1.3.3.3	 Update Method: PUT	 ...	 30
	  7.1.3.3.3.1  API Responses	 ...	 30
	 7.1.3.3.4	 Delete Method: DELETE	 ...	 30
	  7.1.3.3.4.1  API Responses	 ...	 31

	 7.1.3.4	 Endpoint: /tokens/introspect	 ...	 31
	 7.1.3.4.1	 Introspect Method: POST	 ...	 31

	 8 	 COMMON BEHAVIOURS	 ...	 31

	 8.1 	 Common API Response Template	 ...	 31
	 8.3.1 HTTP over TLS	 ...	 32
	 8.3.2 Input Validation	 ...	 32
	 8.3.3 Request/Response Payload Size Limitations	 ...	 32
	 8.3.4 General Recommendations	 ...	 32

	ANNEX A  EXAMPLE CATALOGUE ITEMS	 ...	 34

	 A-1 	 EXAMPLES OF CATALOGUE ITEMS IN JSON FORMAT	 ...	 34

	 A-2 	 REPRESENTATION OF CATALOGUE ITEMS USING JSON-LD FORMAT	 ...	 36

	ANNEX B  RESOURCE SERVER DATA INGESTION	 ...	 38

	 B-1 	 API ENDPOINTS FOR INGESTION	 ...	 38

	 B-1.1 	 Endpoint: /entities	 ...	 38
	 B-1.1.1 	API Response	 ...	 38
	 B-1.2 	 API Endpoint: /ingestion	 ...	 38
	 B-1.2.1 	API parameters	 ...	 39
	 B-1.2.2 	API Response	 ...	 39
	 B-1.3 	 Input validation	 ...	 39

	 B-2 	 OBJECT DEFINITIONS FOR INGESTION APIS	 ...	 39

	 B-2.1 	 DX-RS-ReqBody-Ingestion	 ...	 39
	 B-2.2 	 DX-RS-Ingestion-Params	 ...	 39

	ANNEX C  DX RESPONSE CODES	 ...	 40

	 C-1	 CATALOGUE SERVICE RESPONSE URN	 ...	 40

� Pages

IS 18003 (Part 2) : 2021

v

	 C-2 	 AUTHORIZATION SERVICE RESPONSE URN	 ...	 41

	 C-3 	 RESOURCE ACCESS SERVICE RESPONSE URN	 ...	 41

	ANNEX D  DX USAGE EXAMPLES AND INTERACTION FLOWS	 ...	 42

	 D-1 	 CONSUMER FLOW	 ...	 42

	 D-1.1 	 Discover Resources	 ...	 42
	 D-1.2 	 Request Authorization token in the Auth Server	 ...	 43
	 D-1.3 	 Get data for the resource in the Resource Server	 ...	 44

	 D-2 	 PROVIDER FLOW	 ...	 45

	 D-2.1 	 Register Resources in Catalogue Server	 ...	 45
	 D-2.2 	 Publish data of the Resource in the Resource Server	 ...	 47
	 D-2.3 	 Set access policy to a Consumer	 ...	 48

	ANNEX E  DX EXAMPLE USE CASES 	 ...	 49

	ANNEX F  COMMITTEE COMPOSITION	 ...	 51

	BIBLIOGRAPHY	 ...	 54

LIST OF FIGURES

	 Fig. 1 	 Data Exchange Reference Architecture	 ...	 3
	 Fig. 2 	 Relationship between various catalogue items	 ...	 7
	 Fig. 3 	 Consumer flow interaction diagram.	 ...	 42
	 Fig. 4 	 Provider interaction flow diagram	 ...	 46

LIST OF TABLES

	 Table 1 	 Definition of key terms used in this document	 ...	 2
	 Table 2 	 List of bbreviations used in this document	 ...	 2
	 Table 3 	 Data Exchange Interfaces and APIs for Catalogue Service	 ...	 4
	 Table 4 	 Data Exchange Interfaces and APIs for Resource Access Service	 ...	 4
	 Table 5 	 Data Exchange Interfaces and APIs for Authorization Service	 ...	 4
	 Table 6 	 Data Types Used in Catalogue	 ...	 6
	 Table 7 	 Properties of Iem of type ‘Resource’	 ...	 7
	 Table 8 	 Properties of item of type ‘ResourceGroup’	 ...	 8
	 Table 9 	 Properties of item of type ‘Provider’	 ...	 8
	 Table 10 	 Properties of item of type ‘ResourceServer’	 ...	 8
	 Table 11 	 Parameters and Status codes for Create item	 ...	 10
	 Table 12 	 Parameters and Status codes for Update item	 ...	 10
	 Table 13 	 Parameters and Status codes for Delete item	 ...	 10
	 Table 14 	 Parameters and Status codes for Get item	 ...	 10

� Pages

IS 18003 (Part 2) : 2021

vi

	 Table 15 	 Response codes for API endpoint /item	 ...	 10
	 Table 16 	 Parameters and Status codes for Property Search	 ...	 10
	 Table 17 	 Parameters and Status codes for Geo-spatial Search	 ...	 10
	 Table 18 	 Parameters and Status codes for Fuzzy Text Search	 ...	 11
	 Table 19 	 Response codes for API endpoint /search	 ...	 11
	 Table 20 	 Parameters and Status codes for List item	 ...	 11
	 Table 21 	 Response codes for API endpoint/list	 ...	 11
	 Table 22 	 Parameters and Status codes for Relationship search	 ...	 11
	 Table 23 	 Response codes for API endpoint /relationship	 ...	 11
	 Table 24 	 Supported combinations for entity types and relationships in relationship search	 ...	 13
	 Table 25	 Catalogue search response attributes	 ...	 14
	 Table 26	 Catalogue list response attributes	 ...	 14
	 Table 27	 Catalogue Create, Update, Delete response attributes	 ...	 14
	 Table 28	 Catalogue management API response attributes	 ...	 14
	 Table 29 	 Parameters and Status codes for latest data search	 ...	 16
	 Table 30 	 Parameters and Status codes for geo-spatial search	 ...	 16
	 Table 31 	 Parameters and Status codes for attribute search	 ...	 16
	 Table 32 	 Response codes for Resource Access Service API endpoint /entities	 ...	 16
	 Table 33 	 Parameters and Status codes for Temporal search	 ...	 17
	 Table 34 	 Response codes for Resource Access Service API endpoint/temporal/entities	 ...	 17
	 Table 35 	 Parameters and Status codes for POST based search	 ...	 17
	 Table 36 	 Response codes for Resource Access Service API endpoint

/entityOperations/query	 ...	 17
	 Table 37 	 Parameters and Status codes for POST based temporal search	 ...	 18
	 Table 38 	 Response codes for API endpoint /temporal/entityOperations/query	 ...	 18
	 Table 41 	 Response codes for Resource Access Service API endpoint /subscription	 ...	 19
	 Table 42 	 Resource Access Service /subscription API response codes	 ...	 19
	 Table 39 	 Parameters and Status codes for subscription registration, update and append	 ...	 19
	 Table 40 	 Parameters and Status codes for listing and deleting resources in subscription	 ...	 19
	 Table 43 	 Attribute search query template	 ...	 22
	 Table 44 	 Resource Access Service API parameters	 ...	 22
	 Table 45 	 Response payload schema for successful Resource Access Service search query	 ...	 22
	 Table 46 	 Response payload schema for successful Resource Access Service

subscription delete operation	 ...	 23
	 Table 47 	 Response payload schema for successful Resource Access Service

subscription create/modify operation	 ...	 23
	 Table 48 	 Response payload schema for Resource Access Service error response	 ...	 23
	 Table 49 	 Request payload schema for API endpoint /entityOperations	 ...	 23
	 Table 50 	 Request payload schema for API endpoint /subscription	 ...	 24
	 Table 51 	 Request payload schema for update operation for endpoint /subscription	 ...	 24
	 Table 52 	 UserProfile entity attributes	 ...	 25
	 Table 53 	 Policy entity attributes	 ...	 25
	 Table 54 	 Token entity attributes	 ...	 25

� Pages

IS 18003 (Part 2) : 2021

vii

	 Table 55 	 Request payload schema for Token introspection	 ...	 26
	 Table 56 	 Response payload schema for successful UserProfile operation	 ...	 26
	 Table 57 	 Response payload schema for successful Policy operation	 ...	 26
	 Table 58 	 Response payload schema for successful Token operation	 ...	 26
	 Table 59 	 Response payload schema for AS Error response	 ...	 26
	 Table 60 	 Response payload schema for successful Token introspection operation	 ...	 27
	 Table 61 	 Delete method success response entity attributes	 ...	 27
	 Table 62 	 Parameters and Status codes for user profile creation/updation	 ...	 27
	 Table 63 	 Response codes for POST/PUT methods for API endpoint /user/profile	 ...	 28
	 Table 64 	 Parameters and Status codes for user profile read	 ...	 28
	 Table 65 	 Response codes for GET method for API endpoint /user/profile	 ...	 28
	 Table 66 	 Parameters and Status codes for policy creation/updation	 ...	 28
	 Table 67 	 Response codes for POST/PUT methods for API endpoint /policies	 ...	 28
	 Table 68 	 Parameters and Status codes for policy read	 ...	 29
	 Table 69 	 Response codes for GET method for API endpoint /policies	 ...	 29
	 Table 70 	 Parameters and Status codes for policy deletion	 ...	 29
	 Table 71 	 Response codes for DELETE method for API endpoint /policies	 ...	 29
	 Table 72 	 Parameters and Status codes for authorization token generation	 ...	 29
	 Table 73 	 Response codes for POST method for API endpoint /tokens	 ...	 30
	 Table 74 	 Response codes for READ method for API endpoint /tokens	 ...	 30
	 Table 75 	 Parameters and Status codes for authorization token updation	 ...	 30
	 Table 76 	 Response codes for PUT method for API endpoint /tokens	 ...	 30
	 Table 77 	 Parameters and Status codes for authorization token deletion	 ...	 31
	 Table 78 	 Response codes for DELETE operation for API endpoint /tokens	 ...	 31
	 Table 78 	 Response codes for DELETE operation for API endpoint /tokens	 ...	 31
	 Table 79 	 Response codes for POST method for API endpoint /tokens/introspect	 ...	 31
	 Table 80 	 Base URL Components	 ...	 33
	 Table 81 	 Parameters and Status codes for Publish Data	 ...	 38
	 Table 82 	 Response codes for POST method for Resource Access Service

API endpoint /entities	 ...	 38
	 Table 83 	 Parameters and Status codes for ingestion registration	 ...	 38
	 Table 84 	 Parameters and Status codes for listing and deleting resources

in ingestion	 ...	 38
	 Table 85 	 API parameters for Resource Access Service API endpoint /ingestion	 ...	 39
	 Table 86 	 Response codes for Resource Access Service API endpoint /ingestion	 ...	 39
	 Table 87 	 Request payload schema for Resource Access Service API endpoint /ingestion	 ...	 39
	 Table 88 	 Request payload schema for update operation for endpoint /ingestion	 ...	 39
	 Table 89 	 Catalogue Service API Response URNs	 ...	 40
	 Table 90 	 Authorization Service API Response URNs	 ...	 41
	 Table 91 	 Resource Access Service API Response URNs	 ...	 41

� Pages

IS 18003 (Part 2) : 2021

viii

0 INTRODUCTION

The next wave of smart cities intends to use data-
driven innovative solutions to overcome the challenges
of urbanization. Harnessing the value of enormous
data generated by cities today can solve some of the
key challenges faced by the cities. The current smart
city implementations are unable to satisfy this need
efficiently, due to the proprietary and ad-hoc nature
of the interfaces and their implementations. This
leads to data exchange bottlenecks thereby making
it difficult to develop next generation data driven
solutions, such as solutions based on the Artificial
Intelligence/Machine learning (AI/ML) technologies,
for providing new solutions and services at scale. The
Data Exchange (DX) layer, which is an integral part
of the Data Layer, as specified in IS 18002 : 2021
aims to address this gap by providing a standardized
framework for accessing data in a unified format,
allowing for authorized sharing of data between
different entities, such as various departments in

a city or between various public and private data
providers and third party application developers etc.
The seamless exchange of data is envisioned to lead to
the development of innovative, data based solutions as
well as provide an opportunity for data providers and
application developers to participate in an urban data
marketplace.

This Standard defines Unified Data Exchange interface
specifications. It defines a set of APIs that enables
controlled and secure any-to-any exchange of all
forms of public and privately owned non-personal data
between data providers and consumers.​

Standardized APIs help build robust application
ecosystems that not only improve development cycle
times but also lead to improvement in reusability and
extensibility of the developed applications. With this
objective, this Standard defines APIs for interactions
with the Data Exchange layer. The interfaces are
described in terms of HTTP protocol bindings.

IS 18003 (Part 2) : 2021

1

Indian Standard

UNIFIED DATA EXCHANGE
PART 2: API SPECIFICATIONS

1 SCOPE

This Indian Standard (Part 2) defines the API
specifications for the Data exchange interfaces identified
in the Data exchange reference architecture described
in Part 1 of this standard. The API specifications are
defined for usage over HTTP protocol only.

The target audience for this standard (Part 2) is the
community of software developers who may be the
implementers of the Data exchange layer services
or may be the users of the Data exchange layer, e.g.,
Data exchange data publishers or Data exchange data
consumers wishing to write applications using data
available with the Data exchange.

2 REFERENCES

The standards given below contain provisions which,
through reference in this text, constitute provisions of
this standard. At the time of publication, the editions
indicated were valid. All standards are subject to
revision, and parties to agreements based on this
standard are encouraged to investigate the possibility
of applying the most recent editions of these standards.

IS 18003 (Part 1)
: 2020

Unified Data Exchange
Framework Part 1 Architecture

IS 18002 (Part 1)
: 2021

Unified Digital Infrastructure —
Data Layer Part 1 Reference
Architecture

IETF RFC 7231 “Hypertext Transfer Protocol
(HTTP/1.1): Semantics and
Content”. Available at https://
tools.ietf.org/html/rfc7231

IETF RFC 7232 “Hypertext Transfer Protocol
(HTTP/1.1): Conditional
Requests”. Available at https://
tools.ietf.org/html/rfc7232.

IETF RFC 3986 “Uniform Resource Identifier
(URI): Generic Syntax”.
Available at https://tools.ietf.org/
html/rfc3986.

IETF RFC 8259 “The JavaScript Object Notation
(JSON) Data Interchange
Format”. Available at https://
tools.ietf.org/html/rfc8259.

IETF RFC 7946 “The GeoJSON Format”.
Available at https://tools.ietf.org/
html/rfc7946.

IETF RFC 8141 “Uniform Resource Names
(URNs)”. Available at https://
tools.ietf.org/html/rfc8141.

OGC 06-103r4 “OpenGIS® Implementation
Standard for Geographic
information — Simple feature
access — Part 1: Common
architecture”. Available at
https://portal.opengeospatial.
org/files/?artifact_id=25355.

JSON-LD 1.1 A JSON based serialization
for linked data. W3C
Recommendation, July 2020.
Available at: https://www.
w3.org/TR/json-ld11/

IETF RFC 7807 Problem Details for HTTP APIs.
Available at: https://tools.ietf.
org/html/rfc7807

ISO 8601-1 :
2019

Date and time — Representations
for information interchange —
Part 1: Basic rules Available
at https://www.iso.org/
standard/70907.html

ISO 8601-2 :
2019

Date and time — Representations
for information interchange —
Part 2: Extensions Available
at https://www.iso.org/
standard/70908.html

IETF RFC 2818 “HTTP Over TLS”. Available
at https://tools.ietf.org/html/
rfc2818.

IETF RFC 5246 “The Transport Layer Security
(TLS) Protocol Version 1.2”.
Available at https://tools.ietf.org/
html/rfc5246.

ETSI GS CIM
009 V1.4.1
(2021-02)

Context Information
Management (CIM); NGSI-
LD API. Available at: https://
www.etsi.org/deliver/etsi_gs/
CIM/001_099/009/01.04.01_60/
gs_CIM009v010401p.pdf.

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc8141
https://portal.opengeospatial.org/files/?artifact_id=25355
https://portal.opengeospatial.org/files/?artifact_id=25355
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf

IS 18003 (Part 2) : 2021

2

3 TERMINOLOGY AND ABBREVIATIONS

3.1 Terminology
For the purpose of this standard, the definitions given in
Table 1 shall apply.

Table 1 Definition of key terms used in this
document

Term Definition

Provider Legal Entity: Human (possibly delegated
by an Organization), Organization or an
organizational role that has responsibility to
provide authorization to use resources.

Consumer Legal Entity: Human or Group or Organization
or an organizational Role that consumes a
resource via a web application.

Data Exchange Service: Hosts and manages meta-data about
data resources, manages authorization for
accessing the resources and provides data access
for the available data resources.

DX Catalogue
service

Service: Provides services to manage meta-
information about data resources and provides
search functionalities to discover data resources
hosted with the data exchange. A software entity
providing this service will be referred to as
Catalogue Server.

DX Resource
Access Service

Service: Serves resources to authorized
Apps/Consumers. A software entity providing
this service will be referred to as Resource
Server.

DX
Authorization
Service

Service: Provides authorization to access data
for data resources in accordance to the access
policies set for the resources. A software entity
providing this service will be referred to as
Authorization Server.

Authorization
Token

A digital entity that is used to present the
authorization credentials to the DX Catalogue
and Resource Server.

Authentication
Token

A digital entity used to prove the identity of a
user to the DX Authorization Service.

Catalogue Item An item/document in the DX Catalogue meta-
information store that describes the meta-
information associated with DX entities, such
as a data resource, a group of data resources,
a DX provider etc. Information contained in
a catalogue item depends upon the type of the
item.

App Application: Software (like a mobile app,
web app, device app or server app), that uses
resources to provide a service or experience to
the Consumer.

ProviderApp Application: An App that enables a Provider
to manage the meta-data and access control in
the data exchange, for the resources they are
responsible for.

3.2 Abbreviations

Table 2 List of bbreviations used in this document

Abbreviation Definition

DX Data Exchange

JSON JavaScript Object Notation

API Application Programming Interface

RS Resource Server

CS Catalogue Server

AS Authorization Server

TLS Transport Layer Security

CRUD Create, Read, Update, Delete API operations

JSON-LD JavaScript Object Notation for Linked Data

JWT JSON Web Token

URN Uniform Resource Name

URL Uniform Resource Locator

IRI Internationalized Resource Identifier

AMQP Advanced Message Queuing Protocol

MQTT Message Queuing Telemetry Transport

JMS Java Message Service

UUID Universally Unique IDentifier

XML eXtensible Markup Language

IdP Identity Provider Service

4 DATA EXCHANGE API INTERFACES

The high level architecture of the data exchange (DX)
is presented in IS 18003 (Part 1). The DX reference
architecture recognizes two key stakeholders i.e.
Data providers and Data consumers. A data consumer
consumes a data resource via a client application
for application development. A data provider is the
provider of the data resources and has the responsibility
to provide authorization for the use of its data resources.
The key objective for the DX is to enable seamless,
secure access of data to the consumers while respecting
access control policies set by the provider. Towards
that the DX defines a set of interfaces as shown in
Fig. 1 of IS 18003 (Part 1) (reproduced here for ease
of reference) and described in Table 2 of IS 18003
(Part 1).

This standard provides detailed specifications for some
of the above interfaces. In particular, the Discovery
(D), Management (M), Authorization (A) and Resource
Access (R) interfaces are defined as part of this
standard. As mentioned in IS 18003 (Part 1), defining

IS 18003 (Part 2) : 2021

3

the Consent (C) and Identity (I) interfaces is out of the
scope of the DX specifications.

The services view of DX reference architecture
organizes the above interfaces into the following set of
services:
	 a)	 Catalogue Service: A catalogue server hosts

different types of meta-information for the data
resources available with the data exchange.
The interfaces exposed by the catalogue
service are as follows:

	 1)	 Search / Discovery (D) - Allows
applications to search and discover items.

	 2)	 Management (M) - Allows provider
applications to manage the item’s
metadata.

	 b)	 Authorization Service: An authorization
server provides authorization to access data

according to the access policies set by the
provider using the following interfaces:

	 1)	 Authorization (A) - Allows consumers
to get authorization tokens and resource
servers to validate the authorization
tokens.

	 2)	 Resource Management (A) - Allows
providers to set and control the resource
access policies.

	 c)	 Resource Access Service: A resource server
serves the data to consumers using the
following interfaces:

	 1)	 Resource Access (R) - Allows consumers
to access data.

Tables 3-5 summarize the functionality of each
service using a set of API endpoints exposed by each
service.

Fig. 1 Data Exchange Reference Architecture

IS 18003 (Part 2) : 2021

4

Table 3 Data Exchange Interfaces and APIs for Catalogue Service

Interface API Endpoint Description

Manage (M) /items Create, update and manage the meta-information of resources in the catalogue.

Discover (D) /search Search the catalogue for resources and groups (GET or POST with search queries
only).

/list{entityType} List all the entities of a particular type.

Table 4 Data Exchange Interfaces and APIs for Resource Access Service

Interface API Endpoint Description

Resource (R) /entities/{ID} Search operation to retrieve latest data of a resource (or) a
resourceGroup.

/entities Search and Count operations to retrieve archived data for a
resource using spatial, attribute queries and filters.

/temporal/entities Search and Count operations to retrieve archived data for a
resource using temporal, spatial, attribute queries and filters.

/entityOperations/query Search and Count operations to retrieve archived data for a resource
using spatial, attribute queries and filters using a POST query.

/temporal/entityOperations/query Search and Count operations to retrieve archived data for a
resource using temporal, spatial, attribute queries and filters using
a POST query.

/subscription CRUD operations to subscribe for a resource. This will allow the
consumers to get data as a stream (See Section 6.1.3.5)

Table 5 Data Exchange Interfaces and APIs for Authorization Service

Interface API Endpoint Description

Authorization (A) /policies CRUD operations on policies by an authenticated provider, and read operation by
authenticated consumers. The users can only access/modify policies which they are
associated with.

/tokens CRUD operations on authorization tokens by authenticated consumers.

/user/profile CRUD operations on user profiles by authenticated users. All users can access/
modify only the details associated with their profile. The profile details are used for
user verification and security processes.

The API specifications in this standard are defined for
usage over HTTP protocol, as described in IETF RFC
7231 and IETF RFC 7232, only. Further, the current
specifications mandate that all the APIs shall use TLS
protection over its API endpoints. All APIs specified in
this standard shall support HTTP over TLS (see IETF
RFC 2818, IETF RFC 5246).

Clause 5 to 7 describe the above APIs in detail.
In particular, the Methods, Status codes, Query
Parameters, Responses and Functionalities for each
API are defined. Common behaviours applicable to all
APIs defined in this standard are described in 8. Annex
D provides illustrative DX API usage examples and
Annex E provides a few illustrative use cases of the
data exchange layer.

5 CATALOGUE SERVICE INTERFACE

5.1 Catalogue Information Model

5.1.1 General

A catalogue is a collection of items that describe
various types of meta-information associated with the
data resources available with the DX. For example,
a data descriptor to describe data available with a
resource, provider information, resource description,
discovery hints etc. The information contained in an
item is represented via a set of attributes along with
their values. Catalogue information model describes
the structure of this meta-information: types of
catalogue items, the relationship between the item

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://datatracker.ietf.org/doc/rfc5246

IS 18003 (Part 2) : 2021

5

types, attributes contained in each item type, attribute
data formats etc.

5.1.2 Catalogue Items and Item Types

A DX Catalogue consists of an unordered collection of
‘items’. Each item consists of a set of ‘attribute’ and
‘value’ pairs. Each item shall contain the following two
attributes:
	 a)	 ‘id’: To associate a unique identifier for a

catalogue item
	 b)	 ‘type’: To associated a ‘type’ with a given

catalogue item

An item ‘type’ serves to categorize the type of
information represented by a catalogue item. Each
‘type’ defines a mandatory set of attributes that the
item belonging to that type shall contain.

An item may contain additional meta-information
attributes. Catalogue server implementations are free
to specify additional meta-information attributes for
a given ‘type’ and/or additional item types to provide
enhanced functionality.

A ‘type’ can also be associated with a complex object
which may appear as a ‘value’ object for another
attribute.

In general, a ‘type’ serves to define a ‘schema’ of a
catalogue item or a complex object contained within
an item. Extensible meta-information content imposes
a known syntactic structure that enables defining a
minimal set of search and discovery operations yet
allowing extensions in features provided by individual
DX catalogue server implementations.

A Catalogue server implementation shall specify
the schemas for the various item types. The schema
definitions shall include an unambiguous description of
expected attributes and a specification of a complete set
of mandatory attributes. It is recommended that formal
frameworks, such as JSON Schema, JSON-LD 1.1 etc.,
be used for this purpose.

DX catalogue defines the following base set of item
types:
	 a)	 ‘Resource’,
	 b)	 ‘ResourceGroup’,
	 c)	 ‘ResourceServer’,
	 d)	 ‘Provider’.

A ‘Resource’ item contains meta-information about an
individual resource for which data is available via the
DX Resource Server.

1)	 Such as schema.org. smartdatamodels.org

A ‘ResourceGroup’ item contains meta-information
pertaining to a group of resources. A resource group
defines a grouping of resources with the following
characteristics:
	 a)	 All resources in a group are available with the

same Resource Server,
	 b)	 All resources shall belong to the same

‘Provider’ entity, and
	 c)	 A given resource can belong to at most one

resource group.

Resource groups help to organize the available
resources in an efficient manner, e.g., multiple air
quality monitoring sensors from the same provider can
be grouped together or multiple resources related to
transit management may be grouped together etc.

A ‘Provider’ item contains information about the
DX provider entity, such as name of the ‘Provider’,
description, contact information etc.

A ‘ResourceServer’ item contains information about
‘Resource Server’ that is hosting a set of data resources
available on the data exchange, such as identity,
description, name, domain names etc.

The ‘id’ in a catalogue item serves as a unique DX
system-wide identifier for the entity it represents.
For example, the catalogue id for a ‘Resource’ item
has to be used to access data from this resource on a
Resource server or to set policies for this resource on
the Authorization server.

DX catalogue may also contain an item or an
object of type ‘DataDescriptor’. An object of type
‘DataDescriptor’ describes various data attributes
available with the data for a given resource. The
description of a data attribute is via an extensible set
of meta-information attributes and may include data
formats (strings, number etc.), allowed range of values,
units in case of observed quantities, measurement
resolutions and accuracies etc. Standardization of this
set of attributes is out of the scope of this standard and
is left as an implementation choice. It is recommended
that a DataDescriptor may provide linkages with known
vocabularies and data models1), thereby enabling
the consuming applications to gain a better semantic
understanding of data.

A ‘DataDescriptor’ object may be present in a DX
catalogue as an item of type ‘DataDescriptor’ or as an
object of type ‘DataDescriptor’ contained as a value
of attribute ‘dataDescriptor’ or as an external object
referenceable through a URL link provided in the
‘dataDescriptor’ attribute.

https://json-schema.org/
https://www.w3.org/TR/json-ld11/

IS 18003 (Part 2) : 2021

6

Description of various attributes associated with the
above item types is presented in Clause 5.1.5.

5.1.3 Relationship between catalogue item types

‘Resource’ and ‘ResourceGroup’ are the two key items
around which catalogue services have been designed.
These two items consolidate all types of meta-
information related to the data resources served by the
DX.

A ‘Resource’ represents the most atomic level at which
access to the data and authorizations can be provided. A
resource is always associated with a resource group and
can belong to at most one resource group. Resources
within a resource group are necessarily hosted on the
same resource-server and belong to the same provider
entity. The concept of resource group enables certain
operations, e.g., authorization grants, data descriptor
definitions, search and discovery etc., to be defined on
a group level. Another advantage of such a grouping
is that it enables an efficient organization of meta-
information by collating all the common information
across associated resources in a single object. Thus,
resources within a resource server are organized as
mutually disjoint groups.

Fig. 2 summarizes the relationship between various DX
catalogue objects.

A ‘Resource’ entity shall always contain a reference
to the associated ‘ResourceGroup’. Additionally, a
‘resource’ item may contain a reference to ‘Provider’
and/or ‘ResourseServer’ item also.

A ‘ResourceGroup’ shall contain a reference to
the ‘Provider’ item corresponding to the provider
associated with the resource group.

A ‘ResourceGroup’ item shall contain a reference to a
‘ResourceServer’ item corresponding to the associated
Resource Server that hosts the ‘ResourceGroup’ and
the associated ‘Resources’.

Either the ‘ResourceGroup’ or the ‘Resource’ item
shall contain either the ‘DataDescriptor’ object or a
link to a ‘DataDescriptor’ object. In general, if the data
descriptor is common to all the resources in the resource
group then it may be included in the resource group.
However, if all the resources do not have a common
data descriptor then the data descriptor object or its link
should be contained in each resource item.

The references to another catalogue item and/or to
another object having an Internationalized Resource
Identifier (IRI) are represented using attributes with
‘Relationship’ data type.
		 NOTES
		 1 Relationship attributes allow one to link various catalogue

items (and even external objects) and view the catalogue as a

graph with catalogue items as nodes and relationship attributes
as edges. This enables the relationship queries on the catalogue
(as described in 5.2.2.4) which may be extended to graph
queries in future.

		 2 Only the provider entity associated with ‘ResourceGroup’
and ‘Resources’ is allowed to create/modify/delete these items.

5.1.4 Catalogue data types

Table 6 lists various data types used to describe data
formats for various meta-information attributes defined
in the schema tables.

Table 6 Data Types Used in Catalogue

Attribute Data
Type

Description

String Text for string values.

Number Number for representing numeric values
(Decimals, Integers, etc.).

DateTime Describes ISO Time in a DateTime format
as specified in ISO 8601.

Relationship Class of all Relationships between items
in data exchange. A relationship property
relates a resource to another resource.
The range of relationship properties are
objects describing the links (URIs etc.) to
the related resource and may contain meta-
information about the type of relationship.

GeoJSONGeometry A Geo-JSON Object as per the GeoJSON
format as described in IETF RFC 7946.

Object A generic object.

5.1.5 Schemas for DX catalogue item types

This section provides a list of attributes/properties
associated with different DX catalogue item types.

Tables 7-10 describes the properties associated with an
item of types ‘Resource’, ‘ResourceGroup’, ‘Provider’
and ‘ResourceServer’. Properties with ‘*’ indicates a
mandatory property.

A catalogue service implementation should ensure that
all the mandatory attributes are included in a catalogue
item of a given type.

In addition to the above described mandatory attributes,
a catalogue implementation may define an additional
set of mandatory or optional attributes. A catalogue
implementation may choose to specify additional item
types and their associated attributes. The descriptions
of those additional attributes and item types are left to
the individual catalogue implementation.

5.1.6 Representation of catalogue entities

Catalogue entities shall be represented using JavaScript
Object Notation (JSON) format, as described in
IETF RFC 8259. . JSON is an open data interchange

https://tools.ietf.org/rfc/rfc7946.txt
https://tools.ietf.org/html/rfc8259

IS 18003 (Part 2) : 2021

7

Fig. 2 Relationship between various catalogue items

Table 7 Properties of Iem of type ‘Resource’

Attribute name Attribute Type Attribute Description

id* String Identifier for the catalogue item.

type* String Type of catalogue item.

tags* String Comma separated discovery tags associated with an DXEntity
(resource , resource Group).

description* String Textual description for an DX entity

resourceGroup* String DX Catalogue id of the ResourceGroup entity associated with the
resource.

provider* String DX Catalogue id of the Provider entity associated with the given
catalogue item

name* String Name of the entity.

dataDescriptor Object Descriptor object describing the resource data entities as mentioned
in 5.1.2.

accessPolicy String Defines the access policy for the resource. It can take values: [OPEN,
SECURE]. OPEN implies the access to the Resource is open (does
not need any authorization token for data access). SECURE implies
the access to the Resource is not open (it will need an authorization
token for data access).

location String/Object/
GeoJSONGeometry

Location associated with a resource Item (a spatial point), a group of
resource items (a spatial region).

IS 18003 (Part 2) : 2021

8

Table 8 Properties of item of type ‘ResourceGroup’

Attribute name Attribute Type Attribute Description

id* String Identifier for the catalogue item.

type* String Type of catalogue item.

tags* String Comma separated discovery tags associated with an DXEntity (resource ,
resource Group)

name* String Name of the entity.

description* String Textual description for the catalogue entity.

resourceServer* String/Object DX Catalogue id of the ResourceServer entity for a given Resource or
ResourceGroup.

provider* String/Object DX Catalogue id of the Provider entity associated with the given catalogue
item

resourceType* String Type of resource. ENUM: [MESSAGESTREAM, DATASET, FILE,
MEDIASTREAM, MESSAGE].

accessPolicy* String Defines the access policy for resources belonging to ResourceGroup or an
individual Resource. In the case of a ResourceGroup item, it can take values:
[OPEN, SECURE, MIXED]. OPEN implies all Resources in the group are
open (and need no authorization token for data access). SECURE implies
that all Resources are secured and will need authorization token for access.
MIXED implies that some of the Resource items may be open. In case of
accessPolicy being set to MIXED in the resource group, the individual
resource items will further qualify the access policy using this field.

dataDescriptor Object Descriptor object describing the resource data entities as mentioned in 5.1.2.

location String/Object/
GeoJSONGeometry

Location associated with a resource Item (a spatial point), a group of resource
items (a spatial region).

Table 9 Properties of item of type ‘Provider’

Attribute name Attribute Type Attribute Description

id* String Identifier for the catalogue item.

type* String Type of catalogue item.

name* String Name of the entity.

description* String Description of the DX catalogue item.

providerOrg* Object Information about the Provider Organization.

location String/Object/
GeoJSONGeometry

Location (or a coverage region) associated with the Provider entity.

Table 10 Properties of item of type ‘ResourceServer’

Attribute name Attribute Type Attribute Description

id* String Identifier for the catalogue item.

type* String Type of catalogue item.

name* String Name of the entity.

description* String Description of the DX catalogue item.

location String/Object Location (or a coverage region) associated with a Resource Server.

resourceServerHTTPAccessURL String Resource Server URL for data access based on HTTP/REST APIs

resourceServerStreamingAccessURL String Resource Server URL for data access based on Streaming Protocols

resourceServerOrg Object Information about the organization operating the Resource Server.

IS 18003 (Part 2) : 2021

9

format that uses human readable text to represent
data objects consisting of attribute-value pairs. The
catalogue information model described above lends
itself naturally to JSON representation. Further, it
makes it easier for catalogue service implementations
to describe the structure unambiguously using schema
frameworks such as JSON schema.

An implementation may choose advanced JSON-based
formats, such as JSON-LD, as specified in W3C JSON-
LD 1.1, to represent catalogue entities. Any such
formats used to represent catalogue entities shall be
compliant to JSON format, i.e., catalogue items shall
be valid JSON documents.

Examples of catalogue items in JSON format are
presented in Annex A.

5.2 DX Catalogue APIs

5.2.1 General

The catalogue service provides meta information
about data resources registered with the DX system
and facilitates their discovery by DX data consumers
and their management by the DX data providers. This
section describes APIs for discovery and management
of various catalogue entities which form a part of
the catalogue information model as described in 5.1.
The APIs are described in terms of HTTP structure,
using methods, query parameters, filters, request and
response bodies.

In terms of functionality, the APIs exposed by DX
Catalogue service can be grouped into the categories of
Discovery and Management.

5.2.1.1 Discovery interface

The catalogue discovery interface allows DX consumers
to discover data resources of interest and find meta-
information related to these resources. The following
search and discovery functionalities are supported by
DX catalogue service:

5.2.1.1.1 Attribute/Property Search

It allows users to discover entities with matching values
for certain attributes contained within catalogue items.
It is essentially a key-value pair search. For example,
one can find all resource group items using property
search on item type attribute.

5.2.1.1.2 Geo-spatial search

It allows users to discover data resources using geo-
spatial search. For example, it enables users to locate
data resources such as sensors, cameras etc., in a
particular spatial region.

5.2.1.1.3 Text search

It allows users to find entities using inexact string
matches with the content of a select set of text valued
attributes in catalogue items such as descriptions,
names, tags etc.

5.2.1.1.4 Get Document by ID

It allows the users to get the exact catalogue entity by
providing the id of the entity.

5.2.1.1.5 List based on type

It allows users to list all documents of a given type
in the catalogue. The type may be ResourceGroup,
ResourceServer or Provider.

5.2.1.1.6 Relationship search based on relationship
type

It allows users to find all entity documents which are
related to the root document through the specified
relationship.

5.2.1.2 Management Interface

The Management Interface allows users to create,
update and delete meta-information documents
(items) in the catalogue. The following management
functionalities are supported by DX catalogue
service:

5.2.1.2.1 Create Item

Create / Index an item of a given type, as mentioned in
5.1, in the catalogue.

5.2.1.2.2 Update Item

Update an already existing item in the catalogue.

5.2.1.2.3 Delete Item

Delete an already existing item in the catalogue.

5.2.1.2.4 Get Item

Get a document from the catalogue given its id.

5.2.2 API Endpoints

This section describes various API endpoints exposed
by the DX catalogue service. For details on query
semantics and API parameters refer to 5.2.4. For details
on response body objects refer to 5.2.5.

5.2.2.1 API Endpoint: /item

The /item APIs are a set of DX Provider oriented APIs
to index (create) and manage (update/delete) Catalogue
documents/items.

https://json-schema.org/
https://json-ld.org/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/

IS 18003 (Part 2) : 2021

10

Tables 11-14 describe the API parameters, methods and
status codes as applicable for different functionalities
for the endpoint /item.

Table 11 Parameters and Status codes
for Create item

Functionality Create item

Methods POST

Required post body The request body contains the catalogue
item to be created. The schemas for
different catalogue item types, e.g.,
Resource, Resource Group etc., are
defined in 5.1. The value of attribute
‘type’ in the request body defines the type
of catalogue entity that is to be created
and the request body should adhere to the
schema specified for the corresponding
catalogue entity type.

Status codes 201, 400, 401

Table 12 Parameters and Status codes
for Update item

Functionality Update item

Methods PUT

Required put body The request body contains updated
properties of the catalogue item to be
updated with the already existing id of
the document. The schemas for different
catalogue item types, e.g., Resource,
Resource Group etc., are defined in 5.1.
The value of attribute ‘type’ in the request
body defines the type of catalogue entity
that is to be created and the request body
should adhere to the schema specified for
the corresponding catalogue entity type.

Status codes 200, 400, 401, 404

Table 13 Parameters and Status codes
for Delete item

Functionality Delete item

Methods DELETE

Required query parameter id

Status codes 200, 400, 404

Table 14 Parameters and Status codes
for Get item

Functionality Get item

Methods GET

Required query Parameter id

Status codes 200, 400, 404

5.2.2.1.1 API Response

Table 15 describes different response status codes,
responses and scenarios under which the response
occurs for the /search API.

Table 15 Response codes for API endpoint /item

HTTP
Status
code

Response Body Format Scenario

200 D X - C A T - S u c c e s s -
R e s p o n s e - S e a r c h
D X - C A T - S u c c e s s -
Response-Create-Update-
Delete

Successfully found
document
Successfully deleted
document

201 D X - C A T - S u c c e s s -
Response-Create-Update-
Delete

Successful creation of
document
Successful update of
document

400 DX-CAT-Error-Response Invalid Syntax, Invalid
param type

401 DX-CAT-Error-Response Missing Token, Invalid
Token, Token expired
etc. (Refer 11.1)

404 DX-CAT-Error-Response No such document
exists

5.2.2.2 API Endpoint: /search

The /search API allows DX consumers to discover
metadata documents using key-value (property), geo-
spatial and fuzzy text query parameters. Further a
combination of the three can be used to issue more
complex queries. The query semantics for various
search functionalities are described in 5.2.4.
Tables 16-18 describe the API parameters, methods
and status codes as applicable for the different search
functionalities.

Table 16 Parameters and Status codes
for Property Search

Functionality Property search (see 5.2.4.1)

Methods GET

Required query parameters property, value

Optional query parameter limit, offset, filter

Status codes 200, 400

Table 17 Parameters and Status codes
for Geo-spatial Search

Functionality Geo-spatial search (see 5.2.4.2)

Methods GET

Required query parameters georel, geometry, maxDistance,
coordinates

Optional query parameters geoproperty, limit, offset, filter

Status codes 200, 400

IS 18003 (Part 2) : 2021

11

Table 18 Parameters and Status codes
for Fuzzy Text Search

Functionality Fuzzy Text search (see 5.2.4.3)

Methods GET

Required query parameters q

Optional query parameters limit, offset, filter

Status codes 200, 400

5.2.2.2.1 API Response

Table 19 describes the different response status codes,
responses and scenarios under which the response
occurs for the /search API.

Table 19 Response codes for API endpoint /search

HTTP
Status
code

Response Body Format Scenario

200 DX-CAT-Success-Response-
Search

Successful Query

400 DX-CAT-Error-Response Invalid Syntax,
Invalid param type

5.2.2.3 API Endpoint: /list

The /list API allows DX consumers to list entity
document id’s of a given type. This is useful in
enumerating all documents of a certain type for
consumption of user interfaces. The query semantics
for various search functionalities are described in 5.2.4.

Table 20 describes the API parameters, methods and
status codes as applicable to the endpoint /list.

Table 20 Parameters and Status codes for List item

Functionality List based on type (see 5.2.4.5)

Methods GET

Required path parameter type

Status codes 200, 400

5.2.2.3.1 API Response

Table 21 captures the different response status codes,
responses and scenarios under which the response
occurs for the /list API.

Table 21 Response codes for API endpoint/list

HTTP
Status
code

Response Body Format Scenario

200 DX-CAT-Success-Response-List Successful Query

400 DX-CAT-Error-Response Invalid type

5.2.2.4 API Endpoint: /relationship

The /relationship API allows DX consumers to discover
metadata documents which are related to a root entity
document through some relationship.

Table 22 Parameters and Status codes for
Relationship search

Functionality Relationship search based on
relationship type (see 5.2.4.6)

Methods GET

Required query parameters id, rel

Status codes 200, 400

5.2.2.4.1 API Response

Table 23 describes the different response status codes,
responses and scenarios under which the response
occurs for the /list API.

Table 23 Response codes for API endpoint /
relationship

HTTP
Status
code

Response Body Format Scenario

200 DX-CAT-Success-Response-Search Successful Query

400 DX-CAT-Error-Response Invalid type

5.2.3 API Authorization

Catalogue management APIs that require creation,
updation and deletion of meta-information objects
require authorization. The catalogue server shall
support token based authorization. Authorization
mechanisms should ensure that only authorized users
are allowed to create, update and delete catalogue
items. Token generation, token validation and token
formats are excluded from the scope of this standard.
A ‘Resource’, ‘ResourceGroup’ and ‘Provider’ items
shall only be created/updated/deleted by the associated
provider role or a role acting on behalf of the provider.
‘ResourceServer’ item may be created/updated/deleted
by a DX administrator.

5.2.4 Query Semantics and API Parameters

5.2.4.1 Property Search Semantics and Parameters

The property search finds all catalogue entities where
the value of a given property/attribute matches exactly
to the value provided in the query input. The property
search is applicable to string valued properties only,
i.e., properties whose values are strings or an array
of strings. One may combine multiple properties in a
search through a logical-AND (“&&”). Further, for

IS 18003 (Part 2) : 2021

12

each such property multiple matching values may be
given. Multiple values for a given property are matched
via a logical-OR (“||”) operation.

The parameters for a property query are:
	 a)	 property (Array[String]): Array of properties

(keys) on which query is to be made. The
mapping between a property and a value is
one-to-one

	 b)	 value (Array[Array[String]]): Applicable
values of the one-to-one mapped properties.

The syntax for a property query is as follows:
property=[<prop-1>,<prop-2>]&value=[[<prop-1-
val-1>,<prop-1-val-2>],[<prop-2-val-1>]]. This search
will return entities with the following matching rule:
‘{ <prop-1> ==<prop-1-val-1> || <prop-1> ==<prop-
1-val-2> } && { <prop-2> ==<prop-2-val-2>}’. For
property search only exact string matches are applicable.
Property search can be applied to any property and
may include nested properties through prop.subprop.
subsubprop syntax, wherever applicable. Note that an
implementation may choose to expose only a limited
set of attributes/properties for a given entity type for
this search. In which case such information should be
made available by the respective implementations.

Typically, this search is used to find entities with
required values for properties such as id, resourceGroup,
provider, resourceServer, type etc. Some common uses
are:
	 a)	 search discovery tags:

property=[tags]&value=[[“aqm”, “pollution”]]
	 b)	 search by type of entity:

property=[type]&value=[[ResourceGroup]].
Valid entities are Resource, ResourceGroup,
Provider, ResourceServer.

	 c)	 search resources belonging to a group: propert
y=[resourceGroup]&value=[[<group-id>]]

5.2.4.2 Geo-spatial Search Query Semantics and
Parameters

The Geo search is to search entities using geo-spatial
attributes. A geo-spatial query intends to find all
catalogue entities with geo-spatial bindings (specified
using parameter geoproperty) that satisfies a specific
spatial relation (specified using parameter georel), with
the query input geometry (specified using parameter
geometry and coordinates).

The geometrical data types used in the geo-spatial
query are based on GeoJSON geometry definitions
as described in Section 3.1 of IETF RFC 7946. In
particular, geometry type (e.g., point, polygon etc.)
and coordinate objects representations are based on
GeoJSON specification.

The parameters used in geo-spatial query are as follows:
	 a)	 geoproperty (String): This parameter

specifies the geo-spatial attribute present in
the catalogue entities that defines the target
geometry. This parameter is optional and a
given catalogue service implementation may
specify a default value, such as ‘location’, to
be used for this parameter.

	 b)	 geometry (String): This parameter specifies
the type of input geometries for the spatial
query. This parameter takes on one of the
following values from the list of GeoJSON
geometry types (see IETF RFC 7946): Point,
Polygon, LineString, Bbox. Along with
the coordinates parameter, this parameter
completely specifies the input geometry.

		 The value of ‘Point’ is included to represent
a circle shape (which does not have a direct
representation in GeoJSON) where the
specified coordinates of ‘Point’ geometry
represent the center of the circle. It shall
always be accompanied with a query parameter
maxDistance which represents the radius of
the circle.

	 c)	 georel (String): This parameter specifies
the spatial relationship to be used in the
spatial query along with the input query
geometry. This parameter should take one of
the following values: [‘within’, ‘intersects’,
‘disjoint’]. A brief description of these spatial
relations connecting a target geometry with
input query geometry is as follows:

	 1)	 within: Finds all entities whose target
geometries are within the close shaped
input query geometry.

	 2)	 intersects: Finds all the entities whose
target geometries intersects with the query
input geometry.

	 3)	 disjoint: Finds all entities whose target
geometries are disjoint to, i.e. falling
outside, the close shaped input query
geometry.

		 In the above spatial relationships within
and disjoint are not applicable when input
geometry type is Linestring.

	 d)	 maxDistance (Integer): This parameter
defines the radius in meters when the input geo
shape is a circle. It is applicable only when the
geometry parameter equals Point.

	 e)	 coordinates (Array[Array[Array[Double]]]
or Array[Array[Double]] or Array[Double]):
This parameter specifies the coordinates to
represent the input geometry. The data format
is the same as the corresponding GeoJSON

https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946

IS 18003 (Part 2) : 2021

13

‘coordinate’ object as specified in IETF
RFC 7946. Depending upon the geometry
type this parameter accepts string encoded
one dimensional and multidimensional arrays.
For example, [longitude-1,latitude-1] should
be used for the geometry Point. [[[longitude-
1,latitude-1], [longitude-2,latitude-2],....,
[longitude-n,latitude-n], [longitude-
1,latitude-1]]] should be used for geometry
Polygon. [[longitude-1,latitude-1], [longitude-
2,latitude-2],...., [longitude-n,latitude-n]]
should be used for geometry Linestring.
Finally, [[longitude-1,latitude-1], [longitude-
2,latitude-2]] should be used for geometry
bbox. Note that, for polygon coordinates the
first coordinate is the same as the last. For
bbox, the two coordinate points represent
the top-left and bottom-right vertices of the
bounding box.

A given implementation may choose to specify
additional constraints on allowed values of coordinate
objects for the input geometry, e.g., number of
coordinates in a polygon/linestring etc., in which case
this information should be made available to the DX
consumers via appropriate documentation.

5.2.4.3 Fuzzy Text Search Semantics and Parameters

A fuzzy text search intends to find catalogue entities
containing non-exact or similar matches to a target text
pattern provided as a query input. It searches across all
entity types.
	 a)	 q (String): The pattern to be in-exactly

matched is provided using parameter

The set of properties/attributes that are part of fuzzy
text search is implementation dependent. Further, the
metrics used to evaluate ‘similarity’ or ‘in-exactness of
match’, e.g., Levenshtein distance, are also dependent
on a given implementation and it is recommended
that this information should be made available by the
catalogue service implementations.

5.2.4.4 Complex Search Semantics and Parameters
A combination of Property Search, Geo-spatial Search
and Text Search parameters constitutes a complex
search

5.2.4.5 List Entities Semantics and Parameters

List all entities in the DX catalogue
based on the type of the catalogue entity.
The parameters used in list entities query are as follows:
	 a)	 type (String): The ‘type’ of the entities

whose list is to be obtained. This is a string
enumeration whose values should be one of the
following: [resourceGroup, resourceServer,
provider]

5.2.4.6 Relationship Query Semantics and Parameters
Entity documents in the catalogue are related to each
other with “relationships” as shown in Figure 2. The
relationship is represented by an attribute whose value
is the DX catalogue ID for another entity. For example, a
resource item will contain an attribute ‘resourceGroup’
whose value is the DX catalogue id for the Resource
Group to which this resource belongs. It is possible to
define a query semantic to obtain related entities given
the id of the root entity and the relationship for which
the related entities are required. Such a query will be
very useful for example to fetch all resource items
belonging to a given resource group.

The parameters accepted by this query are as follows:
	 a)	 id (String): id of the root entity
	 b)	 rel (String): Relationship name for which

entities related to the root entity are required.
Current specifications support the following
values for rel: [provider, resourceGroup,
resourceServer, resource].

Because of the hierarchical nature of entities in the
catalogue, only certain root-entity types-relationship
combinations are allowed and their responses will
be either a single document or a list of documents.
Table 24 shows all supported combinations:

Table 24 Supported combinations for entity types and relationships in relationship search

Type of the entity (id) Supported relationships for “rel” Description

Resource resourceGroup,resourceServer,
provider

Return the associated resourceGroup (or resourceServer or provider)
entity. Only a single entity is returned.

ResourceGroup resource Return all resource items associated with the input resource group.
Multiple entities may be returned.

ResourceGroup resourceServer, provider Return the associated resourceServer (or provider) entity. Only a single
entity is returned.

Provider resource, resourceGroup Return all resource or resource group items associated with the input
provider. Multiple entities may be returned.

ResourceServer resource, resourceGroup Return all resource or resource group items associated with the input
resource server. Multiple entities may be returned.

https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946

IS 18003 (Part 2) : 2021

14

5.2.4.7 Limits and Filters

Discovery endpoint supports additional optional
parameters to limit and filter the results of the query. In
particular, the following two operations are supported:
	 a)	 Attribute filtering: Only a subset of properties

of returned documents can be requested in
the response. The attributes of interest can
be specified using the parameter filter. For
e.g, filter=[id,name] returns documents with
only the id and name property retained in the
returned documents.

	 b)	 Pagination: Catalogue service APIs shall
support query pagination. Query pagination
support is defined using parameters: limit and
offset. For details refer to Section 8.4.

5.2.5 DX-CAT Object Definitions

This section contains some common object definitions
used within request/response bodies for the DX
Catalogue service. All the API responses follow the
template defined in 8.1. Extending the responses
mentioned there, the following section describes some
specific responses for the different API endpoints and
functionalities.

5.2.5.1 DX-CAT-Success-Response-Search

The response format (and/or attributes and attribute
values) for a successful search query shall be as given
in Table 25.

Table 25 Catalogue search response attributes

Attribute
Name

Attribute
Data Type

Attribute Value

type String A well defined URN detailing the
response type.

title String A human readable title for the
response.

results Array[JSON
Objects]

A JSON Array containing the
matched entities of the query.

totalHits Number Total number of entities matching
the request.

5.2.5.2 DX-CAT-Success-Response-List

The response format (and/or attributes and attribute
values) for a successful list operation shall be as given
in Table 26.

5.2.5.3 DX-CAT-Success-Response-Create-Update-
Delete

The response format (and/or attributes and attribute
values) for a successful create/update/delete shall be as
given in Table 27.

Table 26 Catalogue list response attributes

Attribute
Name

Attribute
Data Type

Attribute Value

type String A URN indicating a successful
request.

title String A human readable title for the
successful response.

results Array[JSON
Objects]

A JSON Array containing a list of
id’s of the matched entities.

totalHits Number Total number of entities matching the
request.

Table 27 Catalogue Create, Update, Delete
response attributes

Attribute
Name

Attribute
Data Type

Attribute Value

type String A well defined URN detailing the
response type.

title String A human readable title for the
response

results Array[JSON
Objects]

A JSON Array containing a list of
objects whose schema is as shown in
Table 28.

totalHits Number Total number of entities matching the
request

5.2.5.3.1 DX-CAT-Manage-Response

Table 28 Catalogue management API response
attributes

Attribute
Name

Attribute
Data Type

Attribute Value

id String Generated id in the case of Create
Item or Document id in the case of
update and delete.

method String HTTP method used on this API
endpoint (Post/Put/Delete).

status String Status of the request. May indicate a
successful request or a pending for
approval.

6 RESOURCE ACCESS SERVICE INTERFACE

6.1 Resource Access APIs

6.1.1 General

A resource access service provides data access for
a given data resource using search and subscription
APIs which are specified in this section. A resource is
identified using the ‘id’ field from the corresponding
‘Resource’ entity in the DX catalogue. A ‘Resource’
represents an individually access-controlled and
queryable data source in a DX system. This section
defines various data access APIs available for a given

IS 18003 (Part 2) : 2021

15

resource. The APIs are defined for usage over HTTP
protocol and are described using methods, query
parameters, filters, request and response bodies.

The resource access APIs use token-based authorization
to allow a consumer application to access data for a
given resource. A consumer application can obtain
an ‘authorization token’ using the token grant service
provided by the DX Authorization server. The consumer
application then passes the ‘authorization token’, using
the “token” field in the header, as the credential for the
requested data access API. Based on the authorization
information contained in the token, as specified in 7.1.2,
a resource server should accept or deny the data access
request. Note that it is the responsibility of the Resource
Access Service to enforce the access permissions
communicated via the authorization tokens.

The authorization tokens, which are issued by DX
Authorization server, can be in any format, the definitions
of which are out of scope of the current specifications.
It is recommended that the DX Authorization service
implementation choose standard token formats such as
JWT access tokens as described in IETF RFC 7519,
OAuth2.0 bearer tokens as described in IETF RFC 6750
etc. It may be noted that, for opaque/proprietary token
formats, Resource Access service implementation can
use the Token Introspection (TIP) service provided by
the DX Authorization server to decode a given token.
		 NOTE — the authorization token may contain additional

optional resource specific authorization information to allow
for advanced access controls for a given resource. Although,
the definition of these additional access control attributes is
out of the scope of this specification, it shall be noted that the
definition of the attributes and the access control implications
implied by these attributes should be mutually agreed upon
between Resource Server and DX Authorization Server
implementations.

The current resource access service specifications
are aligned with the NGSI-LD API Specifications as
described in ETSI GS CIM 009 V1.4.1 (2021-02).
Currently, the scope of alignment is limited to API
endpoints, functionality and query parameters. Towards
this alignment some features from the current draft
specifications were also included in the latest versions
of NGSI-LD API specifications.

6.1.2 Functionality

The Resource Access Service provides the following
functionality with which users can query a data source
in a DX system. As mentioned in 6.1.1, in terms
of functionality the current resource access service
specifications are fully aligned with the NGSI-LD API
Specifications.

6.1.2.1 Latest Data Search

The Latest Data search allows users to get the latest
(last published) data of a resource.

6.1.2.2 Temporal Search

Temporal search allows users to get data of a resource
using time property based queries. It intends to find
all the data where temporal properties satisfy given
temporal constraints.

6.1.2.3 Spatial Search

Spatial search allows users to get data of a resource
using a geo-spatial query. A geo-spatial query, can be
specified using parameters specifying geo property, geo
relationship, geometry and coordinates, as specified
in 6.1.4. It intends to find all the data where the input
spatial relationship exists between the input geometry
and the geometry specified by the geo property attribute
of the data for a given resource.

6.1.2.4 Attribute Search

Attribute search is used to get data of a resource using
a comparison operator which performs a specific
mathematical, relational or logical operation. An
attribute query returns all documents which matches
the query-specified operation.

6.1.2.5 Complex Search

Complex search is used to get data of a resource using
temporal, spatial and attribute queries. A complex
query returns all documents which matches the query-
specified time, area and operation.

6.1.2.6 Filters

Using filters users can request the resource access
service to respond with a subset of properties in the
matched documents. It can be used along with any
of the search functionalities provided in 6.1.2.1
to 6.1.2.5.

6.1.2.7 Subscription

Subscription allows users to access resources as a stream
using streaming protocols such as MQTT as defined in
MQTT 5.0, AMQP as defined in AMQP 0.9.1, Apache
Kafka, Java Message Service (JMS) etc. By registering
a subscription with the resource access service, users
shall be provided with a dedicated channel with which
data will be made available.

6.1.2.8 Data Ingestion

As mentioned in the reference architecture, IS 18003
(Part 1), the DX does not mandate how the data
is ingested into the resource access service. It is left
to the implementations to choose the most efficient
means of collecting data from various sources such
as edge devices, sensor clouds, vendor-specific APIs
etc. In case a resource server chooses to provide a
publish/ingestion service to data providers to onboard
their data, this document makes some non-normative

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6750
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_cim009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.amqp.org/specification/0-9-1/amqp-org-download
https://kafka.apache.org/
https://kafka.apache.org/
https://jcp.org/en/jsr/detail?id=343

IS 18003 (Part 2) : 2021

16

recommendations about ingestion/publish APIs. These
recommendations are presented in Annex B.

6.1.3 API Endpoints

This section describes various API endpoints exposed
by the DX resource access service. For details on query
semantics, parameters refer to 6.1.4. For details on
response templates and status codes, refer to 6.1.5.

6.1.3.1 API Endpoint: /entities

The /entities API allows DX consumers to query
a data resource using spatial and attribute queries
using resource id, spatial and attribute parameters. It
allows consumers to construct a geo-spatial search,
attribute search and a complex search (combination
of geo-spatial search and attribute search). Further,
by passing the resource id as a path parameter, the
API endpoint can be used to get the latest data for a
resource.

Along with a geo-spatial search, attribute search and
a complex search (combination of geo-spatial search
and attribute search), if an options query parameter
with value equal to count is passed, the/entities API
will respond with a count of records instead of actual
data.

If the data resource is a protected resource a valid
authorization token is mandatory in the header
parameters of the request. Information about the
resource id of the resource and security scope of the
resource can be obtained from the associated meta-
information in the DX catalogue.

Tables 29-31 summarize the applicable parameters for
each search functionality.

Table 29 Parameters and Status codes
for latest data search

Functionality Latest Data search

Methods GET

Required path parameters id

Status codes 200, 204, 400, 401, 404

Table 30 Parameters and Status codes
for geo-spatial search

Functionality Geo-spatial search (see 6.1.4.1)

Methods GET

Required query parameters id, georel, geometry, coordinates

Optional query parameters geoproperty, attrs, options, limit,
offset

Status codes 200, 400, 401, 404

Table 31 Parameters and Status codes
for attribute search

Functionality Attribute Search (see 6.1.4.3)

Methods GET

Required query parameters id, q

Optional query parameters attrs, options, limit, offset

Status codes 200, 400, 401, 404

Note that this endpoint also supports a complex search
which is a combination of geo-spatial and attribute
search. It combines individual searches using logical
AND operation (see 6.1.4.4) and the parameter set for
the complex search is the union of parameter sets for all
the geo-spatial and attribute searches.

6.1.3.1.1 API Response

Table 32 describes the status codes and response body
formats. The response body formats are explained
in 6.1.5.

Table 32 Response codes for Resource Access
Service API endpoint /entities

HTTP
Status
code

Response Body Format Scenarios

200 DX-RS-Success-Response-
Search

Successful Query

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid
param value etc.

401 DX-RS-Error-Response Missing Authorization
Token, Invalid
Authorization Token,
Authorization Token
expired etc.

404 DX-RS-Error-Response Resource not present in
DX

6.1.3.2 API Endpoint: /temporal/entities

The /temporal/entities API allows DX consumers
to query a data resource using temporal, spatial and
attribute queries using resource id, temporal, spatial
and attribute parameters. It allows consumers to
construct a temporal search and a complex search
(using combinations of temporal, spatial and attribute
searches).

Along with a temporal search, and a complex search, if
an options query parameter with value equal to count
is passed, the /temporal/entities API will respond with
count of data records found instead of actual data.

If the data resource is a protected resource a valid
authorization token is mandatory in the header
parameters of the request. Information about the

IS 18003 (Part 2) : 2021

17

resource id of the resource and security scope of the
resource can be obtained from the associated meta-
information in the DX catalogue.

Table 33 summarizes the applicable parameters for the
temporal search functionality.

Table 33 Parameters and Status codes
for Temporal search

Functionality Temporal search (see 6.1.4.2)

Methods GET

Required query parameters id, timerel, time, endtime

Optional query parameters timeproperty, attrs, options,
limit, offset

Status codes 200, 400, 401, 404

		 NOTES
		 1 this endpoint also supports a complex search. The following

three combinations are allowed: a combination of temporal and
geo-spatial (type-1), or temporal and attribute search (type-2)
or temporal and geo-spatial and attribute search (type-3). It
combines individual searches using logical AND operation
as explained in 6.1.4.4. The parameter set for the complex
searches is the union of parameter sets for all the involved
individual searches.

		 2 in order to use this API, temporal query parameters are
mandatory.

6.1.3.2.1 API Response

Table 34 describes the status codes and response body
formats. The response body formats are explained
in 6.1.5.

Table 34 Response codes for Resource Access
Service API endpoint/temporal/entities

HTTP
Status
code

Response Body Format Scenario

200 DX-RS-Success-Response-
Search

Successful Query

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid
param value etc.

401 DX-RS-Error-Response Missing Authorization
Token, Invalid
Authorization Token,
Authorization Token
expired etc.

404 DX-RS-Error-Response Resource not present
in DX

6.1.3.3 API Endpoint: /entityOperations/query

The /entityOperations/query API allows DX consumers
to query a data resource using spatial and attribute
queries using POST method where geo-spatial and
attribute search parameters are passed using a request
body. The semantics of the query itself is exactly the
same as the GET query described in /entities endpoint

above including complex search and count operations.

The reason behind defining a POST query to perform a
similar operation as defined in 6.1.3.1 is to get around
possible limitations on supported query string sizes by
different browsers/applications.

If the data resource is a protected resource a valid
authorization token is mandatory in the header
parameters of the request. Information about the
resource id of the resource and the security scope of
the resource can be obtained from the associated meta-
information in the DX catalogue.

The request body schema for this query is defined by
entity DX-RS-ReqBody-Entities described in 6.1.5.

Table 35 summarizes the applicable parameters for the
POST based search functionality.

Table 35 Parameters and Status codes
for POST based search

Functionality Geo-spatial search and Attribute
Search (see 6.1.4)

Methods POST

Required body parameters type, entities, geoQ (required for
spatial and complex), q (required
for attribute and complex)

Optional body parameters attrs, options

Optional query parameters limit, offset

Status codes 200, 400, 401, 404

		 NOTE — the body parameter geoQ is a JSON object that
further contains geo-spatial search parameters: geometry,
georel and geoproperty.

6.1.3.3.1 API Response

Table 36 describes the status codes and response
body formats. The response body formats are explained
in 6.1.5.

Table 36 Response codes for Resource Access
Service API endpoint /entityOperations/query

HTTP
Status
code

Response Body Format Scenario

200 DX-RS-Success-Response-
Search

Successful Query

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid
param value etc.

401 DX-RS-Error-Response Missing Authorization
Token, Invalid
Authorization Token,
Authorization Token
expired etc.

404 DX-RS-Error-Response Resource not present
in DX

IS 18003 (Part 2) : 2021

18

6.1.3.4 API Endpoint: /temporal/entityOperations/
query

The /temporal/entityOperations/query API allows DX
consumers to query a data resource using temporal,
spatial and attribute queries using POST method where
temporal, geo-spatial and attribute search parameters are
passed using a request body. The semantics of the query
itself is exactly the same as the GET query described in
/temporal/entities endpoint above including complex
search combinations and count operations.

As described above, the reason behind defining a
POST query to perform a similar operation as defined
in 6.1.3.2 is to get around possible limitations on
supported query string sizes by different browsers/
applications.

If the data resource is a protected resource a valid
authorization token is mandatory in the header
parameters of the request. Information about the
resource id of the resource and the security scope of
the resource can be obtained from the associated meta-
information in the DX catalogue.

The request body schema for this query is defined by
entity DX-RS-ReqBody-Search described in 6.1.5.

Table 37 summarizes the applicable parameters for
POST based temporal and complex search functionality.

Table 37 Parameters and Status codes
for POST based temporal search

Functionality Temporal search and Complex
Search (see 6.1.4)

Methods POST

Required body parameters type, entities, temporalQ, geoQ
(required only for complex
search), q (required only for
complex search)

Optional body parameters attrs, options

Optional query parameters limit, offset

Status codes 200, 400, 401, 404

		 NOTES
		 1	 the body parameter temporalQ is a JSON object that

further contains temporal search parameters: timerel, time,
endtime and timeproperty.

		 2	 in order to use this API, temporal query parameters are
mandatory.

6.1.3.4.1 API Response

Table 38 describes the status codes and response
body formats. The response body formats are explained
in 6.1.5.

Table 38 Response codes for API endpoint /
temporal/entityOperations/query

HTTP
Status
code

Response Body Format Scenario

200 DX-RS-Success-Response-
Search

Successful Query

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid
param value etc.

401 DX-RS-Error-Response Missing Authorization
Token, Invalid
Authorization Token,
Authorization Token
expired etc.

404 DX-RS-Error-Response Resource not present
in DX

6.1.3.5 API Endpoint: /subscriptions

The /subscriptions API allows DX consumers to
register, modify, list and delete a subscription for one
or more data resources through a streaming service,
such as MQTT, JMS, Apache Kafka, AMQP etc. The
specific streaming service supported is implementation
dependent and is out of scope of the current specification.

The subscription API shall be a protected API. A
valid authorization token is mandatory in the header
parameters of the request. Information about the
resource id of the resource and security scope of the
resource can be obtained from the associated meta-
information in the DX catalogue.

For future extensibility, to allow for subscription modes
other than streaming, such as call backs, this API shall
require a header parameter options. For the current
specifications, which only support streaming mode of
subscription, this parameter shall always be set equal
to ‘streaming’.

The request body schema for this API is defined
by entity DX-RS-ReqBody-Subscription described
in 6.1.5.

A DX consumer may use the POST method to
register a subscription, PUT method to replace the
resources (modify) in an existing subscription and
PATCH method to append resources to the existing
subscription.

Table 39-40 summarizes the applicable parameters for
subscription functionality.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://jcp.org/en/jsr/detail?id=343
https://kafka.apache.org/
https://www.amqp.org/specification/0-9-1/amqp-org-download

IS 18003 (Part 2) : 2021

19

Table 39 Parameters and Status codes for
subscription registration, update and append

Functionality Register / Update (Replace) /
Append (add) a set of resources
for subscription.

Methods POST, PUT, PATCH

Required body parameters name, type, entities

Status codes 200, 400, 401, 404, 409, 201 (only
for POST)

Table 40 Parameters and Status codes for listing
and deleting resources in subscription

Functionality List / Delete resource(s) subscribed

Methods GET, DELETE

Required path parameters subscriptionID

Status codes 200, 400, 401, 404

6.1.3.5.1 API parameters

DX resource access subscription APIs accept the name,
type and entities request body parameters as described
in 6.1.5.6.

In addition to the above the following parameters as
mentioned in Table 41 are required:

6.1.3.5.2 API Response

Table 42 describes the status codes and response body
formats. The response body formats are explained
in 6.1.5.

6.1.4 Query Semantics and API Parameters

This section describes the parameters used in the
resource access service APIs and their roles with
respect to the overall API functionality.

6.1.4.1 Geo-spatial Search

A geo-spatial query intends to find all the data for a
given resource that satisfies a specific spatial relation
(specified using parameter georel), with the query
input geometry (specified using parameter geometry
and coordinates). The data for the resource is
expected to contain geo-spatial attributes (specified
using parameter geoproperty) that specify the target
geometry used in the spatial relation evaluation.

The geometrical data types used in the geo-spatial
query are based on geoJSON geometry definitions
as described in Section 3.1 of IETF RFC 7946. In
particular, geometry type (e.g., point, polygon etc.)
and coordinate objects representations are based on
GeoJSON specification.

A geo-spatial query is constructed using the following
parameters:
	 a)	 geoproperty (String): This parameter

specifies the geo-spatial attribute/property that
defines the target geometry. This shall match
a geo-spatial attribute present in the data for a
given resource. This parameter is optional and
a given implementation can specify a default
value to be used for this parameter.

Table 41 Response codes for Resource Access Service API endpoint /subscription

Parameter Name Parameter Value
Data Type

Parameter Type Description

subscriptionID String Path Represents the unique subscriptionID for a subscription (See DX-RS-
Subscription-Params object for more details.)

options String Header Represents the streaming options requested by the consumer.

Table 42 Resource Access Service /subscription API response codes

HTTP Status code Response Body Format Scenario

200 DX-RS-Subscription-Success-Response Successful create/update/list operation.

DX-RS-Success-Response-Delete Successful delete operation.

201 DX-RS-Subscription-Success-Response Subscription registration successful

400 DX-RS-Error-Response Invalid Syntax, Invalid param type, Invalid param value etc.

401 DX-RS-Error-Response Missing Authorization Token, Invalid Authorization Token,
Authorization Token expired etc.

404 DX-RS-Error-Response Resource not present in DX

409 DX-RS-Error-Response Resource already registered

https://tools.ietf.org/html/rfc7946

IS 18003 (Part 2) : 2021

20

	 b)	 georel (String): This parameter specifies the
spatial relationship to be used in the spatial
query along with the input query geometry.
This parameter should take one of the following
values: [‘near;maxdistance=<distance_in_
meters>’, ‘within’, ‘intersects’, ‘contains’,
‘equals’, ‘disjoint’, ‘overlaps’]. A brief
description of these spatial relations connecting
a target geometry with input query geometry is
as follows:

	 1)	 within: Target geometry is within the close
shaped input query geometry as specified
by OGC 06-103r4.

	 2)	 intersects: Target geometry intersects with
the input query geometry as specified by
OGC 06-103r4.

	 3)	 near: Target geometry is within a circle
shaped input geometry. The circle shape
is specified using a center point and
radius. The center point is defined using
a ‘point’ valued geometry parameter (see
below). The radius is specified using the
‘maxdistance’ parameter which shall be
specified whenever georel has the value
‘near’. The value of maxdistance is
specified in meters.

	 4)	 contains: Target geometry is contained
within the close shaped input query
geometry as specified by OGC 06-103r4.

	 5)	 equals: Target geometry is equal to the
close shaped input query geometry as
specified by OGC 06-103r4.

	 6)	 disjoint: Target geometry is disjoint to
the close shaped input query geometry as
specified by OGC 06-103r4.

	 7)	 overlaps: Target geometry overlaps to
the close shaped input query geometry as
specified by OGC 06-103r4.

					 NOTES
					� 1 All fields in the above enum list are case

sensitive fields.
					� 2 The relation near;maxdistance is applicable

only for a ‘point’ valued geometry parameter
(see below).

					� 3 An implementation may choose to support
only a subset of the above spatial relationships
in which case the capability list should
be made available by the resource server
implementations, e.g., via DX catalogue and/
or resource access service documentation
etc., to the DX consumers. Additionally,
an implementation may specify maximum
permissible value for maxdistance.

	 c)	 geometry (String): This parameter specifies the
type of input geometries for the spatial queries.
This parameter takes the following values from

the list of GeoJSON geometry types (see IETF
RFC 7946): Point, Polygon, LineString,
Bbox. Along with the coordinates parameter,
this parameter completely specifies the input
query geometry to be used in the spatial query.
Note that, the value of ‘Point’ is included to
represent a circle shape (which does not have
a direct representation in GeoJSON) where
the specified coordinates of ‘Point’ geometry
represent the center of the circle. The parameter
geometry with value Point shall be used only
with georel: ‘near;maxdistance’ where the
modifier maxdistance specifies the radius of
the circle in meters.

	 d)	 coordinates (Array[Array[Array[Double]]]
or (Array[Array[Double]] or Array[Double]):
This parameter specifies the coordinates
to represent the input geometry. The data
format is the same as the corresponding
GeoJSON ‘coordinate’ object as specified in
Section 3.1 of IETF RFC 7946. Depending
upon the geometry type this parameter
accepts string encoded one dimensional
and multidimensional arrays. For example,
[longitude-1,latitude-1] should be used for the
geometry Point. [[[longitude-1,latitude-1],
[longitude-2,latitude-2],...., [longitude-
n,latitude-n], [longitude-1,latitude-1]]] should
be used for geometry Polygon. [[longitude-
1,latitude-1], [longitude-2,latitude-2],....,
[longitude-n,latitude-n]] should be used for
geometry Linestring. Finally, [[longitude-
1,latitude-1], [longitude-2,latitude-2]] should
be used for geometry bbox. Note that, for
polygon coordinates the first coordinate is the
same as the last. For bbox, the two coordinate
points represent the top-left and bottom-right
vertices of the bounding box.

				� NOTE — a given implementation may choose to specify
additional constraints on allowed values of coordinate
objects for the input geometry, e.g., number of coordinates
in a polygon/linestring etc., in which case this information
should be made available to the DX consumers via
appropriate documentation.

6.1.4.2 Temporal Search

A DX temporal query can be used to query data
sets with temporal constraints. In particular, it can be
used to request historic values within the specified
timeframe.

A temporal search accepts time property based queries
which are based on date-time formats specified in ISO
8601 : 2004. The params and their accepted values are
as follows:
	 a)	 timeproperty (String): This parameter

specifies the temporal property/attribute to

https://www.ogc.org/standards/sfa
https://www.ogc.org/standards/sfa
https://www.ogc.org/standards/sfa
https://www.ogc.org/standards/sfa
https://www.ogc.org/standards/sfa
https://www.ogc.org/standards/sfa
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/40874.html

IS 18003 (Part 2) : 2021

21

which the temporal query is to be applied.
The value of this parameter shall match a
temporal attribute present in the data for a
given resource. This parameter is optional and
a given implementation may specify a default
value to be used for this parameter.

	 b)	 timerel (String): This parameter specifies the
time relation to be used in the temporal query.
It specifies the temporal relation that shall
exist between the time property in the data
and the input temporal parameters. It shall
be one of the following: [‘between’, ‘before’,
‘after’]. The interpretations of these values is
as described below:

	 1)	 before: For a data record to match, the
value of the specified temporal property in
the data has to be before the time specified
by the query parameter time.

	 2)	 after: For a data record to match, the value
of the specified temporal property in the
data has to be after the time specified by
the query parameter time.

	 3)	 between: For a data record to match, the
value of the specified temporal property
in the data has to be between the time
specified by the query parameter time and
endtime.

	 c)	 time (String<ISO 8601 format>): Start
time for the temporal query in ISO 8601
format.

	 d)	 endtime (String<ISO 8601 format>): End
time for the temporal query in ISO 8601
format. This parameter is applicable only
when timerel equals between.

		 NOTE — there may exist implementation dependent
limits on the allowed time differences between time
and endtime, in which case the resource access service
implementations should make this information available for
the consumers, e.g., via DX catalogue or API documentation
etc. Similar limits may apply for before and after temporal
queries too.

6.1.4.3 Attribute Search

An attribute query works on an attribute level and
finds data where the value of the given attribute (target
value) satisfies the conditions implied by the query
operator and a query input value. An attribute query
works with attributes that are “string” and “numeric”
valued. For example, the following attribute query
‘q=airTemperature>=20’ will find data for a given
resource where the property airTemperature has value
greater than or equal to 20. Table 43 summarizes
various operators allowed for the attribute query along
with their matching criteria.

6.1.4.4 Complex Search

A complex search combines any of the above geo-
spatial, attribute or temporal searches. It combines
individual searches using logical AND operation. That
is, the search output results shall satisfy the matching
criteria for each individual search. The parameter set
for the complex searches is the union of parameter sets
for all the involved individual searches.

6.1.4.5 Response Filtering

A resource access query operation can optionally return
a result set that can include only the specified attributes.
This operation is called filtering. The attributes of
interest can be specified in a comma separated format
using the query parameter attrs (String). If attrs is not
specified, no filtering is performed and all attributes
present in the data shall be returned.

6.1.4.6 Query pagination

Resource access APIs shall support query pagination.
Query pagination support is defined using parameters:
limit and offset. For details refer 8.4.

6.1.4.7 Counting the Number of Results

DX resource access queries support returning just the
number of records found as a result of query execution.
This may be useful for consumers in case the number
of hits is too large and may require fine tuning of query
parameters. This operation is supported via query
parameter options (String). Setting options equal to
count returns only the number of records matching the
query instead of returning data from the query results.
This parameter should always be used along with a
valid query (spatial, temporal or attribute). Also, note
that this parameter should not be used along with the
parameter attrs (response filtering).

6.1.4.8 API parameters

DX resource access service APIs accept the following
parameters as described above: georel, geometry,
coordinates, geoproperty, timeproperty, timerel,
time, endtime, q, attrs, options, limit, offset and
options.

In addition to above the following parameters as
described in Table 44 are required by the DX resource
access service APIs:

6.1.5 DX-RS Object definitions

This section contains some common object
definitions used within request/response bodies for the
DX resource access service. These objects are listed in
Tables 45-51.

IS 18003 (Part 2) : 2021

22

Table 43 Attribute search query template

Operator Query Template Matching Criteria

Equal
(represented as ==)

q=attr1==val1 Applicable to both string and numeric valued attributes.
For string valued attributes: Finds all data for a resource where
the value of attr1 exactly matches val1 or where one of the array
elements of attr1 value matches val1 exactly, in case attr1 is an
array of strings.
For numeric valued attributes: Finds all data for a resource where
the value of attr1 is equal to val1.

Not Equal
(represented as !=)

q=attr1!=val1 Applicable to both string and numeric valued attributes.
For string valued attributes: Finds all data for a resource where
the value of attr1 does not match val1 or where none of the array
elements of attr1 value match val1, in case attr1 is an array of
strings.
For numeric valued attributes: Finds all data for a resource where
value of attr1 is not equal to val1.

Greater than
(represented as >)

q=attr1>val1 Applicable to only numeric valued attributes.
Finds all data for a resource where the value of attr1 is strictly
greater than val1.

Greater than equal
(represented as >=)

q=attr1>=val1 Applicable to only numeric valued attributes.
Finds all data for a resource where the value of attr1 is greater
than or equal to val1.

Lesser than
(represented as <)

q=attr1<val1 Applicable to only numeric valued attributes.
Finds all data for a resource where the value of attr1 is strictly
lesser than val1.

Lesser than equal
(represented as <=)

q=attr1<=val1 Applicable to only numeric valued attributes.
Finds all data for a resource where the value of attr1 is lesser than
or equal to val1.

Between
(represented as ==)

q=attr1==val1..val2 For numeric valued attributes: Finds all data for a resource where
value of attr1 lies between val1 and val2 with endpoints included,
i.e., val1<= value(attr1) <= val2.

		 NOTE — for a given resource the attribute query may be applicable only to an implementation dependent subset of attributes present
in the data. The information about the set of attributes to which this query may apply should be provided to the DX consumer, e.g.,
through DX catalogue or API documentation etc. Further, an implementation may choose to impose additional restrictions on the
allowed values, such as length of input strings, not allowing special characters etc.

Table 44 Resource Access Service API parameters

Parameter Name Parameter Value Data Type Description

id String Represents the unique ID for the resource as per the DX catalogue.

6.1.5.1 DX-RS-Success-Response-Search

Table 45 Response payload schema for successful Resource Access Service search query

Attribute Name Attribute Data Type Attribute Value

type String A well defined URN as per the response type.

title String A human readable title for the response.

results Array[JSON Objects] A JSON Array containing data records found as a result of the query.
The data attributes contained in returned records depend upon the data
Resource. The information about that should be made available by
providers of the resource via data descriptor objects contained in the
corresponding Resource/ResourceGroup entity in the DX Catalogue.

totalHits Number Total number of documents responded for the request.

IS 18003 (Part 2) : 2021

23

6.1.5.2 DX-RS-Success-Response-Delete

Table 46 Response payload schema for successful Resource Access Service subscription delete operation

Attribute Name Attribute Data Type Attribute Value

type String A well defined URN as per the response type.

title String A human readable title for the response.

results Array[JSON Objects] A JSON Array containing the result of the operation.

6.1.5.3 DX-RS-Success-Response-Subscription

Table 47 Response payload schema for successful Resource Access Service subscription
create/modify operation

Attribute Name Attribute Data Type Attribute Value

type String A well defined URN as per the response type.

title String A human readable title for the response.

results Array[JSON Objects] A JSON array containing objects of type DX-RS-Subscription-Params as
defined above.

6.1.5.4 DX-RS Error-Response

Table 48 Response payload schema for Resource Access Service error response

Attribute Name Attribute Data Type Attribute Value

type String A well defined URN as per the response type. Note that in this case
this value may provide additional hints about the nature of the error
response.

title String A human readable title for the response.

detail String A detailed information regarding the reason for the error.

6.1.5.5 DX-RS-ReqBody-Search

Table 49 describes the attributes used in the request
body for the POST query described by endpoint /

entityOperations.

Table 49 Request payload schema for API endpoint /entityOperations

Attribute Name Attribute Data Type Attribute Value

type String Should be always equal to Query

entities Array of JSON Objects Each object contains the id of a resource. The semantics of the parameters in
the JSON object are as per the id parameter defined in Section 6.1.4.8.

geoQ JSON Object Contains attributes for geo-spatial search. That is, georel, geometry and the
optional parameter geoproperty. The semantics and formats of the parameters
are as per the Geo-spatial Search query parameters defined in Section 6.1.4.1.

temporalQ JSON Object Contains attributes for temporal search. That is, timerel, time, endtime and
timeproperty.
The semantics of the parameters in the JSON object are as per the temporal
Search query parameters defined in Section 6.1.4.2.
This attribute is applicable with /temporal/entityOperations/query endpoint
only.

q string The semantics of the parameters are as per the Attribute Search defined in
Section 6.1.4.3.

attrs string The semantics of the parameters are as per the definition in Section 6.1.4.5.

options string The semantics of the parameters are as per the definition in Section 6.1.4.7.

IS 18003 (Part 2) : 2021

24

6.1.5.6 DX-RS-ReqBody-Subscription

Table 50 Request payload schema for API endpoint /subscription

Attribute Attribute Data Type Attribute Value

name String A compact alias name for the subscription

type String The value of type should always be equal to “subscription” for this API
endpoint.

entities Array[String] Array of resource id(s) as per DX catalogue.

6.1.5.7 DX-RS-Subscription-Params

Table 51 Request payload schema for update operation for endpoint /subscription

Attribute Attribute Data Type Attribute Value

subscriptionID String Represents the unique subscriptionID for a subscription.

entities Array[String] Array of resource id(s) associated with a subscription.

		 NOTES
		 1 The Resource Access Service shall ensure that subscriptionID is unique for all subscriptions issued by it. The format of subscriptionID

is left out of scope of this specification and is dependent on a given implementation.
		 2 The above object may contain additional subscription parameters, such as subscription credentials, streaming server URLs,

subscription queues etc., which are dependent on the specific streaming service implemented by the resource access service.
Details of these specific parameters shall be made available via implementation specific API documentation for a DX resource
server.

7 AUTHORIZATION SERVICE INTERFACE

7.1 Authorization Service APIs

7.1.1 General

The Authorization Server (AS) provides Authorization
and Accounting services to the users of the DX layer.
The main APIs exposed by this interface are grouped
into the following categories:
	 a)	 User Profile
	 b)	 Policy
	 c)	 Authorization Token

The authentication mechanism is considered to be out
of scope for this specification. Suggested methods
can include OpenID Connect. Unless otherwise
specified all the APIs specified by the authorization
service interface require authentication by the relevant
user. These APIs can be further enhanced/limited
based on the user role.

7.1.1.1 User Profile

The User Profile APIs are a collection of CRUD
operations available to all authenticated users. These
allow the user to view and modify their profile details
which are used by the DX platform to provide any
ancillary services such as role management, contact

information, etc. A user can access/modify only their
own profile.

7.1.1.2 Policy

The Policy APIs are a collection of CRUD operations
available to DX Providers to manage the access control
to their resources. The policy entity is a simple mapping
of a resource ID or a resource group ID, and a DX
Consumer. Additionally, it may include any relevant
scope information required by a DX Resource Server to
fulfil the request. Additional policy constraints may be
defined at a later date which enables advanced policy
enforcements.

7.1.1.3 Authorization Token

The Authorization Token APIs are a collection of
CRUD operations available to all DX Consumers to
obtain and manage the authorization tokens which
are accepted by the DX interface services. The
authorization tokens are requested by an authenticated
consumer by specifying the resources (groups) that
need to be associated with the new token. The AS shall
ensure that all the relevant policies associated with the
requested resources are satisfied before granting the
token. This token, when presented at a DX interface
shall be introspected (may be online/offline depending
on the token format specification, e.g., UUID vs JWT),
and the resulting access control decision is enforced.

https://tools.ietf.org/html/rfc7519

IS 18003 (Part 2) : 2021

25

7.1.2 Authorization Service Object Definitions

This section contains some common object definitions
used within request/response bodies for the DX

Authorization service. These objects are listed in
Tables 52-61.

7.1.2.1 DX-AS-UserProfile-Entity

The UserProfile entity attributes are listed in Table 52.

Table 52 UserProfile entity attributes

Attribute Name Attribute Type Description

user_id String A unique auto generated ID by the Authorization Service identifying the DX user.
Shall not be modified after creation.

roles Array of Strings An array of valid roles (consumer, provider) that the user wishes to register with.

7.1.2.2 DX-AS-Policy-Entity

The Policy entity attributes are listed in Table 53.

Table 53 Policy entity attributes

Attribute Name Attribute Type Description

policy_id String A unique ID identifying a policy. Shall not be modified after policy creation.

item_id String The catalogue ID of the protected item to which the policy applies.

item_type String The catalogue type of the protected item (Resource or ResourceGroup)

user_id String The user ID to whom this policy applies.

provider_id String The user ID of the provider who created the policy. Shall not be modified after
policy creation.

policy_expiry DateTime The expiry time associated with a policy in an ISO 8601 compatible string.

constraints JSON Object A key-value map of <strings, object> which specify optional constraints which are
implementation specific

7.1.2.3 DX-AS-Token-Entity

The authorization token issued by Authorization
service is associated with meta-information containing

the attributes listed in Table 54.

Table 54 Token entity attributes

Attribute Name Attribute Type Description

token_id String A unique ID identifying the token. Shall not be modified after token creation.

expiry DateTime The expiry time of the token in an ISO 8601 compatible string.

access_token String The access token which is passed to the DX interface, such as RS, by a DX
consumer.

status enum String The status of a token with possible values as: “active” or “revoked”

server URL String A valid DX interface service URL for which this token has been issued.

resources Array of resource ID
Strings

An array of Resource IDs as specified in the DX catalogue.

		 NOTES
		 1 Access_token format is not specified in this document. The implementation may choose the formats from available options such as

JWT, UUID or any proprietary format. For opaque formats, such as UUID, the AS implementation shall provide a token introspection
service to provide the above meta-information associated with the authorization token.

		 2 AS implementations may choose to add additional meta-information attributes.

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

IS 18003 (Part 2) : 2021

26

7.1.2.4 DX-AS-TIP-Req

Table 55 Request payload schema for Token introspection

Attribute Name Attribute Type Description

access_token String The access_token which is to be introspected. Passed on by a DX consumer to a DX
interface while accessing a protected resource.

item_id String The resource ID requested by the DX consumer as per the DX catalogue.

item_type String The catalogue type of the protected item (Resource or ResourceGroup)

7.1.2.5 DX-AS-UserProfile-Success-Resp

Table 56 Response payload schema for successful UserProfile operation

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable error type.

title String A brief human readable title of the error.

detail String A detailed human readable error description.

results JSON Object JSON object defined by DX-AS-UserProfile-Entity. Response shall contain
attributes user_id and roles.

7.1.2.6 DX-AS-Policy-Success-Resp

Table 57 Response payload schema for successful Policy operation

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable error type.

title String A brief human readable title of the error.

detail String A detailed human readable error description.

results JSON Array of Objects Defined by DX-AS-Policy-Entity. Response shall contain attributes policy_id,
item_id, item_type, user_id and provider_id. May optionally contain the
attribute constraints

7.1.2.7 DX-AS-Token-Success-Resp

Table 58 Response payload schema for successful Token operation

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable error type.

title String A brief human readable title of the error.

detail String A detailed human readable error description.

results JSON Array of Objects Defined by DX-AS-Token-Entity. Response shall contain attributes token_id,
access_token, status, expiry, resources, and server.

7.1.2.8 DX-AS-Error-Response

Response body format in case of error response for AS API endpoints.

Table 59 Response payload schema for AS Error response

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable error type. Note that in this case this
value may provide additional hints and finer details about the nature of the error.

title String A brief human readable title of the error.

detail String A detailed human readable error description.

IS 18003 (Part 2) : 2021

27

7.1.2.9 DX-AS-TIP-Success-Response

Response body format for /tokens/introspect endpoint.

Table 60 Response payload schema for successful Token introspection operation

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable error type.

title String A brief human readable title of the error.

detail String A detailed human readable error description.

results JSON Object Response shall contain attributes: [token_id, status, expiry, server] as defined
in DX-AS-Token-Entity; and an array of objects with each object containing
[item_id, item_type, constraints] as defined by DX-AS-Policy-Entity.

7.1.2.10 DX-AS-Delete-Success-Response

Table 61 Delete method success response entity attributes

Attribute Name Attribute Type Description

type String A URN which specifies a machine readable success type.

title String A brief human readable title of the success message.

7.1.3 API Specifications

All APIs shall require an authentication token inside
a header parameter called “token” unless otherwise
specified. The token may be generated by an external
Identity Provider (IdP) Service. The mechanics of how
the IdP generates this token is considered out of scope
for this standard. Common recommended token options
include OpenID Connect, SAML as described in IETF
RFC 7522, X.509 client certificates and username/
password combination. The chosen IdP shall always
provide a way to inspect the identity of the user via
token introspection.

7.1.3.1 Endpoint: /user/profile

This endpoint allows a DX user to manage their user
profile. Users can create their user profile as part of
the registration process, view their profile and modify
their own profile.

7.1.3.1.1 Create/Update User Profile

The endpoint /user/profile supports methods POST
and PUT to create and update a user profile. To create
a user profile a list of roles that the user wishes to
register for is required. A user can either be a DX
Provider, DX Consumer or both. The API response,
after successful registration, shall include an auto
generated user ID for the DX user. Many subsequent
AS APIs, as mentioned below, require this user ID to
identify a given user. The format of the user ID is left
open to a given implementation and is out of scope of
this standard.

Also note that, additional implementation specific
roles may also be allowed by the DX Authorization
servers. The implementation may require further
information (such as email etc.) for additional services
the implementation intends to provide and such
information should be made available via appropriate
implementation specific API documentation.

A DX user can use the PUT method to modify their
own user profile. This method accepts the same input
as the POST method. The existing user profile object
is replaced with the profile sent as the input of this
method.

The request body schema for POST and PUT methods
is defined by entity DX-AS-UserProfile-Entity
described in 7.1.2.

Table 62 summarizes the applicable parameters for
user profile create functionality.

Table 62 Parameters and Status codes for user
profile creation/updation

Functionality Create/Update user profile

Methods POST, PUT

Required body parameters roles

Status codes 201, 400, 401, 409 (only for
POST), 200 (only for PUT)

7.1.3.1.1.1 API Responses

Table 63 describes the status codes and response
body formats. The response body formats are explained
in 7.1.2.

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7522

IS 18003 (Part 2) : 2021

28

Table 63 Response codes for POST/PUT methods
for API endpoint /user/profile

HTTP
Code

Response Body
Format

Scenarios

201 DX-AS-UserProfile-
Success-Resp

Successful creation for POST
method.

400 DX-AS-Error-Response Missing information, invalid
input, invalid role etc.

401 DX-AS-Error-Response Missing authentication token,
invalid authentication token
etc.

409 DX-AS-Error-Response Profile already exists.

200 DX-AS-UserProfile-
Success-Resp

Successful update for PUT
method.

7.1.3.1.2 Read User Profile

A user can view their user profile by using the GET
method. The AS implementation may provide additional
query fields and/or filters. Table 64 summarizes the
endpoint parameters.

Table 64 Parameters and Status codes
for user profile read

Functionality Read own user profile

Methods GET

Query parameters None

Status codes 200, 401

7.1.3.1.2.1 API Responses

Table 65 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 65 Response codes for GET method for API
endpoint /user/profile

HTTP
Code

Response Body
Format

Scenario

200 DX-AS-UserProfile-
Success-Resp

Successful read

401 DX-AS-Error-Response Missing authentication
token, invalid authentication
token etc.

7.1.3.2 Endpoint: /policies

This endpoint is used mainly by DX providers to set
and manage access control policies to the resources
they own. The DX providers can set a policy to grant
access to DX consumers. The Read operation can also
be used by the DX consumer to view the resources that
they have access to. Any additional policies associated

with custom roles are left to the discretion of the
implementation.

For future extensibility, additional policy objects
may be acceptable by a given authorization service
implementation. Specifics of new policy expression
language, decision rules etc. should be made available
for DX users via appropriate documentation.

7.1.3.2.1 Create/Update Policies

Policies are created or updated by a DX provider which
apply to the resources that they own. These policies
are sent as an array of Policy objects. These operations
ensure transactional safety by either succeeding for all
policies, or in case of an error, aborting without any
persisted changes.

The request body schema for POST and PUT methods
is defined by entity DX-AS-Policy-Entity described
in 7.1.2.

Table 66 summarizes applicable parameters for policy
create functionality.

Table 66 Parameters and Status codes
for policy creation/updation

Functionality Create / Update Policies

Methods POST, PUT

Required body parameters policy_id (for PUT only), item_id,
item_type, user_id

Optional body parameters constraints, policy_expiry

Status codes 201, 400, 401, 409, 200 (for PUT
only)

7.1.3.2.1.1 API Responses

Table 67 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 67 Response codes for POST/PUT
methods for API endpoint /policies

HTTP
Code

Response Body
Format

Scenario

201 DX-AS-Policy-Success-
Resp

Successful creation of
multiple policies using
POST

400 DX-AS-Error-Response Missing information, invalid
input

401 DX-AS-Error-Response Missing authentication
token, invalid authentication
token etc.

409 DX-AS-Error-Response Already exists

200 DX-AS-Policy-Success-
Resp

Successful update of
multiple policies using PUT

IS 18003 (Part 2) : 2021

29

7.1.3.2.2 Read Policies
Policies can be viewed by a DX user using the Read
operation. This endpoint shall check the authentication
token and return only the relevant policies based on the
token identity, for example, policies which were either
created by that user as a provider, and/or policies which
apply to that user as a consumer. The implementation
may provide additional search, filtering and pagination
options.
Table 68 summarizes the applicable parameters for
policy read functionality.

Table 68 Parameters and Status codes
for policy read

Functionality Read Policies

Methods GET

Required body parameters NA

Status codes 200, 401

7.1.3.2.2.1 API Responses
Table 69 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 69 Response codes for GET method
for API endpoint /policies

HTTP
Code

Response Body
Format

Scenario

200 DX-AS-Policy-Success-
Resp

Successful read

401 DX-AS-Error-Response Missing authentication
token, invalid authentication
token etc.

7.1.3.2.3 Delete Policies
Policies may be deleted by the DX provider who had
authored the policies. The endpoint accepts an array
of policy IDs and it shall ensure transactional safety
as specified in the Create operation. When a policy is
deleted, all the tokens which were issued against it shall
be considered invalidated during token introspection
with respect to that particular DX Consumer and
Resource combination.
Table 70 summarizes the applicable parameters for
policy delete functionality.

Table 70 Parameters and Status codes
for policy deletion

Functionality Delete Policies

Methods DELETE

Required body parameters policy_id

Status codes 200, 400, 401

7.1.3.2.3.1 API Responses

Table 71 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 71 Response codes for DELETE method for
API endpoint /policies

HTTP
Code

Response Body Format Scenario

200 DX-AS-Delete-Success-
Response

Successful deletion of
multiple policies

400 DX-AS-Error-Response Missing information,
invalid input

401 DX-AS-Error-Response Missing authentication
token, invalid
authentication token etc.

7.1.3.3 Endpoint: /tokens

This endpoint is used by the DX consumers to
create and manage their authorization tokens. The
format of the authorization token issued by the
authorization service is out of scope for this standard,
since it depends on the implementation’s non-functional
requirements. The metadata associated with the token is
specified in the DX-AS-Token-Entity object described
in 7.1.2.

7.1.3.3.1 Create Method: POST

Authorization tokens are requested by a DX
consumer by providing an individual resource ID
in the request body. Note that authorization service
implementations may allow multiple resources to be
associated with a single token in which case a list of
resource IDs may be provided in the request body. All
the resources associated with one token shall be served
from the same resource server. When a consumer
requests for a token against a list of resources, the
relevant policies are checked to ensure that the
consumer has access to all the resources before issuing
the authorization token.

The request body schema for POST method is defined
by entity DX-AS-Token-Entity described in 7.1.2.

Table 72 summarizes the applicable parameters for
authorization token grant functionality.

Table 72 Parameters and Status codes for
authorization token generation

Functionality Generate token for a DX
consumer

Methods POST

Required body parameters resources

Status codes 201, 400, 401

IS 18003 (Part 2) : 2021

30

7.1.3.3.1.1. API Responses

Table 73 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 73 Response codes for POST method
for API endpoint /tokens

HTTP
Code

Response Body Format Scenario

201 DX-AS-Token-Success-Resp Access token generated
successfully.

400 DX-AS-Error-Response Missing information,
invalid input

401 DX-AS-Error-Response Missing authentication
token, invalid
authentication token

7.1.3.3.2 Read Method: GET

Authorization tokens generated by a DX consumer
can be read using this operation for review purposes.
It returns the metadata associated with the token
as specified in the entity definition (7.1.2). The
implementation may optionally include linked data
such as the relevant policies which were evaluated
during the token generation. It may also allow filtering
parameters. This method is optional.

7.1.3.3.2.1. API Responses

Table 74 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 74 Response codes for READ method
for API endpoint /tokens

HTTP
Code

Response Body Format Scenario

200 DX-AS-Token-Success-Resp Successful read

401 DX-AS-Error-Response Missing authentication
token, invalid
authentication token
etc.

7.1.3.3.3 Update Method: PUT

This method is optional. In case where implementations
allow multiple resources per token this method may be
used to modify the list of resources associated with
a token. This list can be updated dynamically by the
consumer to either remove or add new resources to the
same token. The list of resource IDs to be updated for
an already existing token are passed in the input request
body. Multiple authorization tokens can be updated in
a single call. Note that all the relevant policies shall be

reevaluated before the existing authorization tokens are
modified.

The request body for PUT method accepts an array
of DX-AS-Token-Entity objects. Each object shall
contain two attributes: token_id and resources, where
token_id represents an already existing authorization
token to be updated with additional list of resource
Ids contained in the resources attribute of the same
object. The DX-AS-Token-Entity object is described
in 7.1.2.

Table 75 summarizes the applicable parameters for
authorization token update functionality.

Table 75 Parameters and Status codes for
authorization token updation

Functionality Generate token for a DX consumer

Methods PUT

Required body parameters (token_id, resources) for each
DX-AS-Token-Entity object

Status codes 200, 400, 401

7.1.3.3.3.1 API Responses

Table 76 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 76 Response codes for PUT method for API
endpoint /tokens

HTTP
Code

Response Body
Format

Scenario

200 DX-AS-Token-Success-
Resp

Successful modification of
multiple tokens.

400 DX-AS-Error-Response Missing information, invalid
input

401 DX-AS-Error-Response Missing authentication
token, invalid authentication
token etc.

7.1.3.3.4 Delete Method: DELETE

A DX consumer may revoke authorization tokens
which they have generated by providing a list of the
token IDs. The operation shall ensure transactional
safety, with either all token revocations succeeding or
no changes should be applied. Once a token has been
revoked, the token introspection call from any DX
interface service, such as a resource server, shall fail
for that token.

Table 77 summarizes the applicable parameters for
authorization token delete functionality.

IS 18003 (Part 2) : 2021

31

Table 77 Parameters and Status codes for
authorization token deletion

Functionality Delete authorization tokens for a
DX consumer

Methods DELETE

Required body parameters Array of token_id. For token_id,
see DX-AS-Token-Entity object
definition.

Status codes 200, 400, 401

7.1.3.3.4.1 API Responses

Table 78 describes the status codes and response
body formats. The response body formats are explained
in 7.1.2.

Table 78 Response codes for DELETE operation
for API endpoint /tokens

HTTP
Code

Response Body Format Scenario

200 DX-AS-Delete-Success-
Response

Successful deletion of
multiple tokens

400 DX-AS-Error-Response Missing information,
invalid input

401 DX-AS-Error-Response Missing authentication
token, invalid
authentication token etc.

7.1.3.4 Endpoint: /tokens/introspect

This endpoint is used by DX interface service, such
as Resource Access Service, to introspect a token
generated by DX Authorization service. Its most
important use is by Resource Access service to
introspect an authorization token presented to it by a
DX consumer to access a protected resource. The DX
interface shall be authenticated to call this endpoint and
can only introspect tokens whose resources are served
by that specific interface.

7.1.3.4.1 Introspect Method: POST

The introspect operation accepts the authorization token
and the resource ID requested by the DX consumer as
input parameters. It returns a minimum response of
the following mandatory fields: token status, token
expiry time and introspection decision (allow/deny).
It may also choose to return additional policy related
constraints which can be dynamically enforced by
the RS.

The request body schema for POST method is defined
by entity DX-AS-TIP-Req object described in 7.1.2.

7.1.3.4.1.1. API Responses

Table 79 describes the status codes and response body
formats. The response body formats are explained
in 7.1.2.

Table 79 Response codes for POST method for API
endpoint /tokens/introspect

HTTP
Code

Response Body
Format

Scenario

200 DX-AS-TIP-Success-
Response

Successful introspection.

400 DX-AS-Error-Response Missing information, invalid
input

401 DX-AS-Error-Response Missing authentication
token, invalid authentication
token etc.

403 DX-AS-Error-Response Resource server not allowed
to inspect the presented
token

8 COMMON BEHAVIOURS

8.1 Common API Response Template

This section defines the common response templates/
schemas for all the DX Interface API response payloads.
The response template shall follow the structure as
recommended in IETF RFC7807. In particular, the
framework to provide additional finer details about the
errors in a machine-interpretable way is adopted. The
response payloads contain the following mandatory
attributes:
	 a)	 type: A URN (Uniform Resource Name), as

defined in IETF RFC 8141, describing the
exact “type” of the response. This allows
service implementations to add additional
machine-interpretable codes to specify finer-
grained details about the errors/issues apart
from the high-level status codes presented in
the header of the response. A recommended list
of above types in URN format can be found in
Annex C (informative).

	 b)	 title: Human readable title of the response.

Depending upon the API response the payload may
contain the following optional attributes:
	 a)	 detail: Detailed human readable explanation

in case of errors.
	 b)	 results: Array of returned objects as per the

result of the operation.
	 c)	 totalHits: Total number of records found for

the search query.
	 d)	 limit: Applicable in case of pagination

response (See Section 8.4).

The contents of results depend upon the requested API.
For example, it may contain data for a search query
on a given resource or it may contain subscription
information or data for DX catalogue search etc. The
information about the returned objects within results
attributes should be documented along with the
individual API descriptions or should be documented

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc8141

IS 18003 (Part 2) : 2021

32

via additional means such as API objects, DX entity
schemas, Data descriptors for given resources etc.
Similarly, a detailed list of URN based type codes
for each DX service should be made available to the
consumers.

8.2 JSON Payloads

The HTTP APIs in this standard have been defined for
JSON payloads. JSON, as defined in IETF RFC 8259,
is a well accepted and preferable format for exchanging
data for HTTP APIs.

The APIs accept JSON documents for request payload
and also send responses as JSON documents. The
response header for all the APIs returning data
shall respond with parameter ‘Content-Type’ set to
‘application/json’. It is recommended that for the
current version of API the accept header parameter
allowed by the servers may be ‘application/json’ or
‘application/json+ld’.

8.3 API Security

8.3.1 HTTP over TLS

This standard mandates that all the APIs shall use TLS
protection over its API endpoints. All APIs specified in
this standard shall support HTTP over TLS, as specified
in IETF RFC 2818 (also see IETF RFC 5246).

8.3.2 Input Validation

API implementations shall validate parameters
passed as query, header or request body parameters.
It is recommended that the validation strategies
should follow API security best practices, such as
recommendations by OWASP API Security Project, to
provide protection against SQL injection, provide range
and limit validations etc. Additionally, checks shall be
performed to not accept request body with disallowed
characters as specified in Section 4.6.4 in the NGSI-LD
API Specifications.

8.3.3 Request/Response Payload Size Limitations

API implementations shall specify a maximum size
limit (e.g., in MB) on the response/request payloads.
Implementations shall also specify a maximum limit
on the number of records to be returned in response
to successful search queries, where the records are
returned in a result array. API server implementations
supporting query paginations shall additionally specify
a limit on the maximum value for the parameter offset
(see Section 8.4). API Requests leading to violations
of the above limits shall return an error code of 400.
Additional information about the type of error code
should be provided using type parameter in the
response payload (see Section 8.1).

8.3.4 General Recommendations

In general, it is recommended to incorporate all the
API security best practices, such as recommended by
OWASP API Security Project, NIST SP 800-204 etc.,
while implementing the interfaces proposed in this
standard. Further, it is recommended to incorporate
API gateways, providing further protection from
attacks such as DDOS attacks, as an integral part of the
implementation architectures.

8.4 Query Pagination

A DX API can potentially return a result set including
a large number of records. This may typically apply for
search queries supported by both the Catalogue service
and the Resource Access Service. For such scenarios,
API implementations shall support pagination of query
results. The response pagination behaviour is controlled
by the following query parameters:
	 a)	 limit (Integer): Specifies the number of records

to be responded back in a given pagination
iteration. This is an optional parameter and in
case it is not provided a default maximum limit
as per the implementation shall apply.

	 b)	 offset (Integer): Specifies an offset value
specifying the record number from which the
response limit shall be applied for a given
pagination iteration.

An implementation shall specify a default limit on
the maximum number of records that can be returned
in a single pagination iteration and parameter limit
with values higher than this shall not be accepted.
Further, an implementation shall also specify a limit
on the maximum acceptable value for parameter offset.
Implementations shall respond back with an error code
400 in case input parameters limit and offset exceed the
acceptable values.

The parameter limit contained in the pagination
iteration response specifies the actual number of records
returned in each iteration. In case fewer than requested
records are returned this parameter will be useful to
compute the offset for the next page. The pagination
termination ends when the computed offset for the next
page is greater than equal to totalHits or greater than
the maximum allowed offset.

Implementations shall also ensure that response
for each pagination iteration shall not exceed the
maximum payload size limit. Server implementations
may respond back with an error code 400. Or it may
respond back with a reduced number of records.

Server implementations may support additional
advanced pagination mechanisms, for example,
time-based pagination, cursor-based pagination and/

https://datatracker.ietf.org/doc/html/rfc8259
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://owasp.org/www-project-api-security/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://owasp.org/www-project-api-security/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf

IS 18003 (Part 2) : 2021

33

or offset based pagination as specified in https://
developers.facebook.com/docs/graph-api/using-
graph-api/#paging. Any such paging mechanism
implementations shall adhere to the general pagination
principles specified in Section 4.12 of NGSI-LD API
Specifications.

8.5 Additional Common Status Codes

Apart from the functional status codes specified in API
endpoint descriptions, additional status codes, e.g., 500
(Internal Server error), 408 (Request Timed out) etc.,
may be returned by API server implementations. It is
recommended that the server implementations should
adhere to the well-established norms of categorisation
of status codes based on the first digit of the code,
i.e., 1xx (Informational), 2xx (Successful), 3xx
(Redirection), 4xx (Client Error), 5xx (Server Error), as
specified in IETF RFC 7231. It is further recommended
that additional URN-based codes be defined (e.g.,
as described in Annex C) to provide an additional
description of the type of response associated with a
given status code.

8.6 Base URL

The base URL precedes all API endpoints and verbs.
A template for base-url is as follows: https://{Root_
Path}/{version}/. Table 80 describes the base URL
components.

Table 80 Base URL Components

Name Description

Root_Path A root path contains the server address, port,
protocol and implementation specific path names
(if any) with which the APIs are exposed.

version Specifies the API version associated with the
endpoint. Note that for the APIs specified in this
document the ‘version’ should be set to v1.

It is recommended to include DX service identity in
the {Root_path}. The recommended values for DX

service ids are as follows:
	 a)	 DX Catalogue Service - cat
	 b)	 DX Authorization Service - auth
	 c)	 DX Resource Access Service - ngsi-ld or rs
		 NOTE - having a version number in the API will help the

server to support multiple versions of the same endpoint. With
this approach it will be easier for the APIs to be constantly
updated as and when there are new requirements.

Using the above base-url template, an example for the
full path for an endpoint, e.g., /search endpoint, of DX
Catalogue Interface can be: https://<domain-ip>/dx/
cat/v1/search, where
	 a)	 Base-url is https://<domain-ip>/dx/cat/v1
	 1)	 Root Path is https://<domain-ip>/dx/cat

(Note that service id is cat)
	 2)	 Version is v1
	 b)	 Endpoint is /search

Similarly, examples of AS tokens endpoint and RS
entities endpoint are: https://auth.dx.org.in/dx/auth/v1/
tokens and https://rs.dx.org.in/dx/ngsi-ld/v1/entities,
respectively.

8.7 API Usage Logs

Implementation of all APIs shall log user interactions
and make available the usage statistics for auditing
purposes. It is recommended that all the best practices
for logging for auditing purposes should be followed.

8.8 API Documentation

Service implementations of DX interfaces shall make
available API documentation that shall also include all
implementation specific information such as default
parameter values, implementation specific limits,
optional response payloads, additional catalogue
information model entities etc. It is recommended that
the documentation be provided in language agnostic
format easy to be read by both humans and machines
such as OpenAPI Specification format.

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf
https://datatracker.ietf.org/doc/html/rfc7231
about:blank
about:blank
https://swagger.io/specification/

IS 18003 (Part 2) : 2021

34

ANNEX A
(Clause 5.1.6)

EXAMPLE CATALOGUE ITEMS

A-1 EXAMPLES OF CATALOGUE ITEMS IN JSON FORMAT

Some examples of catalogue items of various types listed in 5.1 are given below.

Example of Resource Item

{
 “id”: “<provider>/<resourceServer>/<resourceGroup>/<resource>”,
 “type”: [“iudx:Resource”, “iudx:EnvAQM”],
 “name”: “myResource1”,
 “resourceGroup”: “<provider>/<resourceServer>/<resourceGroup>”,
 “provider”: “<provider>”,
 “tags”: [“tags”, “describing”, “resource”],
 “description”: “This is a description of myResource1 which is a co2 sensor”,
 “location”: {
 “type”: “Place”, “address”: “Bangalore”, “geometry”: {
 “coordinates”: [77.57003, 13.01417], “type”: “Point” }
 }
}

Example of Resource Group item

{
 “id”: “<provider>/<resourceServer>/<resourceGroup>”,
 “type”: [“iudx:ResourceGroup”, “iudx:EnvAQM”],
 “name”: “<resourceGroup>”,
 “provider”: “<provider>”,
 “tags”: [“tags”, “describing”, “resource”, “group”],
 “description”: “This is a description of <resourceGroup> of co2 sensors “,
 “resourceType”: “MESSAGESTREAM”,
 “iudxResourceAPIs”: [“TEMPORAL”, “SPATIAL”, “ATTR”],
 “accessPolicy”: “SECURE”,
 “authControlLevel”: “GROUP”,
 “dataDescriptor”: {
 “co2”: {
 “type”: [“TimeSeriesAggregation”],
 “description”: “The aggregated value for Carbon Dioxide (C02) in part
per million over the last 15 minutes.”,
 “avgOverTime”: {
 “dataSchema”: “iudx:Number”,
 “unitText”: “part per million (ppm)”,
 “unitCode”: “59”,
 “type”: [
 “ValueDescriptor”
],
 “aggregationDuration”: {
 “unitCode”: “MIN”,
 “unitText”: “minutes”,
 “value”: 15
 },
 “description”: “Average value of CO2 for the last 15 minutes”
 }
 }
 }
}

IS 18003 (Part 2) : 2021

35

Example of a Data Descriptor entity

 {
 “co2”: {
 “type”: [“TimeSeriesAggregation”],
 “description”: “The aggregated value for Carbon Dioxide (C02) in part
per million over the last 15 minutes.”,
 “avgOverTime”: {
 “dataSchema”: “iudx:Number”,
 “unitText”: “part per million (ppm)”,
 “unitCode”: “59”,
 “type”: [
 “ValueDescriptor”
],
 “aggregationDuration”: {
 “unitCode”: “MIN”,
 “unitText”: “minutes”,
 “value”: 15
 },
 “description”: “Average value of CO2 for the last 15 minutes”
 }
 }
 }

Example of Provider item

{
 “id”: “<provider”,
 “name”: “<provider-name>”,
 “description”: “A description of this provider”,
 “providerOrg”: {
 “location”: {
 “type”: “Place”, “address”: “Bangalore”,

 “geometry”: {
 “coordinates”: [77.57003, 13.01417],

 “type”: “Point” }
 },
 “additionalInfoURL”: “https://dx.org.in”,
 “name”: “dx”
 },
 “type”: [
 “iudx:Provider”
]
}

IS 18003 (Part 2) : 2021

36

Example of ResourceServer item

{
	 “type”: [
 	 “iudx:ResourceServer”
],
	 “id”: “<resource-server>”,
	 “name”: “rs.dx.org.in”,
	 “description”: “DX resource server”,
	 “tags”: [“DX”, “Resource”, “Server”, “Platform”],
	 “resourceServerHTTPAccessURL”: “rs.dx.org.in”,
	 “resourceServerStreamingAccessURL”: “databroker.dx.org.in”,
	 “resourceServerOrg”: {
 	 “name”: “dx”,
 	 “additionalInfoURL”: “https://dx.org.in”,
 	 “location”: { “type”: “Place”, “address”: “Bangalore”,
 	 “geometry”: { “type”: “Point”, “coordinates”: [77.570423,
13.013945]
 	 }
 	 }
	 },
	 “location”: {
 	 “type”: “Place”, “address”: “Bangalore”,
 	 “geometry”: { “type”: “Point”, “coordinates”: [77.570423, 13.013945] }
	 }
}

A-2 REPRESENTATION OF CATALOGUE
ITEMS USING JSON-LD FORMAT

This section is non-normative in nature.

A given DX catalogue implementation may choose
advanced JSON-based representations for the meta-
information objects. This section discusses representing
catalogue entities using JSON-LD as described in
W3C JSON-LD 1.1 specifications. Note that JSON-LD
document is a valid JSON document.

The catalogue items can be represented as linked data
objects (see Linked Data). The mandatory attributes,
and preferably the custom attributes as well, of an
item, are mapped to discoverable universal resource
identifiers, as defined in IETF RFC 3986. That is, the
attributes are provided with a context. The context for
a given attribute may contain information on how the
attribute should be interpreted. The context enables
providing linkages, using linked data primitives, to
vocabularies/taxonomies thereby leading to further
enhancement in its interpretability by machines (and
humans).

JSON-LD framework may be used to provide linked
data encodings to the attributes in the catalogue objects.
All the catalogue items are JSON-LD documents and
necessarily need to include “@context” field, which

contains JSON-LD context, that maps attributes to IRIs
(Internationalized Resource Identifiers) as described in
IETF RFC 3987 providing unambiguous identification
of these attributes.

For attributes in the catalogue items, the context can
be provided via a hosted DX vocabulary. For custom
attributes, it is recommended that the provider of these
items should use context from DX vocabulary and/or
from other existing vocabularies.

JSON-LD ‘@type’ field is used to define the type of a
catalogue item. Note that a catalogue item is allowed
to have multiple types and it simply implies that the
item may contain attributes from multiple types. One
such scenario arises when a given ‘resource’ item
needs to contain a domain specific meta information.
For example, an air quality monitoring data resource
may mention the ‘model of the device’ which is a
domain specific data model attribute. In such a case, the
catalogue item will include an ‘AQM data model’ type
along with ‘Resource’ item type. Another such scenario
arises where a ‘DataDescriptor’ object, which typically
belongs to a ‘Data Model’ type, may contain attributes
from multiple ‘Data Model’ types.

As mentioned above, an item type for a catalogue item
has an associated schema which is used to define the
syntactic structure of an item belonging to this type.

https://www.w3.org/TR/json-ld11/
http://www.w3.org/DesignIssues/LinkedData.html
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://tools.ietf.org/html/rfc3986
https://json-ld.org/
https://www.ietf.org/rfc/rfc3987.txt

IS 18003 (Part 2) : 2021

37

These schemas are specified as a part of catalogue entity
definitions in DX specific vocabulary. An equivalent
representation may also be specified using JSON
schema framework. In particular, JSON-schema based
schemas can also be used for validating the structure of
catalogue items.

In the table below, an example representation of a
data descriptor object using JSON-LD is presented.
Note that, in the context object, a vocabulary (IUDX
vocabulary with URL https://voc.iudx.org.in/) has been

2)	 JSON LD Playground: https://json-ld.org/playground/

set as the default vocabulary. Additional vocabularies
can be referred to as and when required. See for
example, “qudt” vocabulary (https://qudt.org/vocab/
unit) has been used for choosing units for the quantity
‘atmosphericPressure’. Similarly, for some other
established attributes, such as unitCode and unitText,
a popular vocabulary schema.org (https://schema.
org/) has been used. JSON-LD parsers, such as one
available in JSON-LD Playground2), are able to expand
such JSON-LD objects and provide all the necessary
linkages to the applications consuming this data.

Example of DataDescriptor object using JSON-LD

{
 “@context”: [
 “https://voc.iudx.org.in/”,
 {
 “qudt-unit”: “http://qudt.org/vocab/unit/”,
 “unitCode”: {
 “@type”: “@id”
 },
 “schema”: “https://schema.org/”,
 “iudx”: “https://voc.iudx.org.in/”
 }],
 “type”: [“iudx:EnvAQM”, “iudx:DataDescriptor”],
 “atmosphericPressure”: {
 “type”: [“ValueDescriptor”],
 “description”: “Measured Air pressure”,
 “schema:unitCode”: “qudt-unit:MILLIBAR”,
 “schema:unitText”: “Milli Bar”,
 “dataSchema”: “iudx:Number”
 }
}

https://json-schema.org/
https://json-schema.org/
https://qudt.org/vocab/unit
https://qudt.org/vocab/unit
https://schema.org/
https://schema.org/

IS 18003 (Part 2) : 2021

38

ANNEX B
(Clause 6.1.2.8)

RESOURCE SERVER DATA INGESTION

This Annex describes two optional APIs that may be
implemented by the resource access service for data
ingestion.

B-1 API ENDPOINTS FOR INGESTION

B-1.1 Endpoint: /entities

The /entities API allows DX providers to publish data
into the DX platform using a POST method. The data
published into DX shall be as per the data descriptor
defined in the DX Catalogue.

The POST method of the /entities API shall be a
protected endpoint. To publish data using this API, a
valid authorization token is mandatory in the header
parameters of the request.

The request body for this API shall contain the data
to be published in JSON format. Note that the data
payload shall always contain the resource “id”, as
per the DX Catalogue, apart from the mandatory
data attribute/value object pairs. As a best practice, it
is recommended that the publish service, accessible
through this endpoint, in DX resource server validate
the published data with the data descriptor present in
the DX Catalogue. Table 81 summarizes the applicable
parameters for publish functionality.

Table 81 Parameters and Status codes
for Publish Data

Functionality Publish Data into DX

Methods POST

Required header parameters token

Required body parameters id, Mandatory attributes and
value as per the data descriptor
in the DX catalogue

Status codes 201, 400, 401, 404

B-1.1.1 API Response

Table 82 describes the status codes and response body
formats. The response body formats are explained
in 6.1.5.

B-1.2 API Endpoint: /ingestion

The /ingestion API allows DX providers to register,
list and delete a resource ingestion stream for one or
more data resources through a streaming service, such
as AMQP , MQTT etc. The specific streaming service
supported is implementation dependent and is out of
scope of the current specifications.

Table 82 Response codes for POST method for
Resource Access Service API endpoint /entities

HTTP
Status
code

Response Body Format Scenario

201 DX-RS-CreatedSuccess-
Response

Publication successful

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid param
value etc.

401 DX-RS-Error-Response Missing Token, Invalid
Token, Token expired etc.

404 DX-RS-Error-Response Resource not present in DX

The ingestion API shall be a protected API. A valid
authorization token is mandatory in the header
parameters of the request. Information about the
resource id of the resource and security scope of the
resource can be obtained from the associated meta-
information in the DX catalogue.

For future extensibility, to allow for ingestion
modes other than streaming, such as remote API call
integration, this API shall require a header parameter
options. For the current specifications, which only
support streaming mode of ingestion, this parameter
should always be set equal to ‘streaming’.

The request body schema for this API is defined by
entity DX-RS-ReqBody-Ingestion described in 6.1.5.
A DX provider can use the POST method to register a
resource for ingestion.

Tables 83-84 summarize the applicable parameters for
ingestion functionality.

Table 83 Parameters and Status codes
for ingestion registration

Functionality Register a set of resources for
ingestion

Methods POST

Required body parameters entities

Status codes 201, 400, 401, 404, 409

Table 84 Parameters and Status codes for listing
and deleting resources in ingestion

Functionality List/Delete resource(s) registered
for ingestion

Methods GET, DELETE

Required path parameters ingestionID

Status codes 200, 400, 401, 404

https://www.amqp.org/specification/0-9-1/amqp-org-download
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

IS 18003 (Part 2) : 2021

39

B-1.2.1 API parameters

DX resource ingestion APIs accept the following
request body parameters as described in section B-2.1:
entities

In addition to the above the parameters given in
Table 85 are required:

Table 85 API parameters for Resource Access
Service API endpoint /ingestion

Parameter
Name

Parameter
Value

Data Type

Parameter
Type

Description

ingestionID String Path Represents the unique
ingestionID for a
resource ingestion
(See DX-RS-
I n g e s t i o n - P a r a m s
object below for more
details.)

options String Header Represents the
streaming options
requested by the
consumer.

B-1.2.2 API Response

Table 86 describes the status codes and response body
formats. The response body formats are explained in
6.1.5.

Table 86 Response codes for Resource Access
Service API endpoint /ingestion

HTTP
Status
code

Response Body Format Scenario

201 DX-RS-CreatedSuccess-
Response

Resource Ingestion
registration successful

200 DX-RS-DeletedSuccess-
Response

Registered resource
ingestion deleted successful

400 DX-RS-Error-Response Invalid Syntax, Invalid
param type, Invalid param
value etc.

401 DX-RS-Error-Response Missing Token, Invalid
Token, Token expired etc.

404 DX-RS-Error-Response Resource not present in DX

B-1.3 Input validation

It is recommended that the DX Resource Access
Interface should allow data to be published only as
per the data structure and format, specified by the
data descriptor, defined in the DX Catalogue. Further,
it is recommended that the resource server ensures
additional input validation as defined in section 4.6.4 in
the NGSI-LD API Specifications.

B-2 OBJECT DEFINITIONS FOR INGESTION
APIS

B-2.1 DX-RS-ReqBody-Ingestion

Table 87 describes the request payload schema for an
ingestion registration (/ingestion) API.

Table 87 Request payload schema for Resource
Access Service API endpoint /ingestion

Attribute Data Type Attribute Value

entities Array[String] Array of resource id(s) as per DX
catalogue.

B-2.2 DX-RS-Ingestion-Params

Table 88 Request payload schema for update
operation for endpoint /ingestion

Attribute Data Type Attribute Value

ingestionID String Represents the unique ingestionID
for a resource ingestion.

entities Array[String] Array of resource id(s) associated
with ingestion registration.

Resource Access Service should ensure that ingestionID
is unique for all ingestion streams issued by it. The
format of ingestionID is left out of scope of this
standard and is dependent on a given implementation.

The above object may contain additional ingestion
parameters, such as ingestion credentials, streaming
server URLs etc., which are dependent on the specific
streaming service implemented by the resource access
service. Details of these specific parameters shall
be made available via implementation specific API
documentation for a DX resource server.

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.04.01_60/gs_CIM009v010401p.pdf

IS 18003 (Part 2) : 2021

40

ANNEX C
(Clause 8.1, informative)

DX Response Codes

The response code of HTTP has its own limitation on
the extent to which an error associated with the query
can be communicated. In order to avoid the above
issue and in order to allow application developers to
build the application with a self correcting feature, DX
recommends the interfaces to provide the following
URNs which are represented in a machine-interpretable
format.

The URN formats are as per the recommendations in
the IETF RFC 2141 and have the following syntax:
	 a)	 urn
	 b)	 Namespace Identifier (NID)
	 c)	 Namespace Specific String (NSS)

The format of the urn shall be urn:<NID>:<NSS>

The leading “urn:” sequence is case-insensitive.
It is recommended to use “dx” as the NID
and “<interfaceName>”:“<statusCode>”, e.g.
“cat:Success” as NSS.

The recommended URN’s for the DX interfaces are
detailed in section C-1, C-2, C-3.

C-1 CATALOGUE SERVICE RESPONSE URN

Table 89 specifies the recommended API response
URNs for a DX catalogue interface.

Table 89 Catalogue Service API Response URNs

URN Description

urn:dx:cat:Success Successful operation

urn:dx:cat:WrongProvider Operation not permitted for given provider link

urn:dx:cat:WrongResourceServer Operation not permitted for given resource server link

urn:dx:cat:WrongResourceGroup Operation not permitted for given resource group link

urn:dx:cat:InvalidSchema Invalid schema for the given document type

urn:dx:cat:NonExistentID No record of the given id

urn:dx:cat:AlreadyExists Document already exists

urn:dx:cat:ExpiredAuthorizationToken Authorization token has expired

urn:dx:cat:MissingAuthorizationToken Token needed and not presented

urn:dx:cat:InvalidAuthorizationToken Token is invalid

urn:dx:cat:ItemNotFound Document of given id does not exists

urn:dx:cat:InvalidGeoParam Invalid geo param for the given query

urn:dx:cat:InvalidGeoValue Invalid geo param value for the given query

urn:dx:cat:InvalidProperty Invalid property for the given query

urn:dx:cat:InvalidPropertyValue Invalid property value for the given query

urn:dx:cat:BadTextQuery Bad text value for the query

urn:dx:cat:MethodNotAllowed Method not allowed for given endpoint

urn:dx:cat:UnsupportedMediaType Requested/Presented media type not supported

urn:dx:cat:InvalidRelationshipType Invalid relation type for the given query

urn:dx:cat:InvalidRelationParent Parent document for the given query doesn’t exists

urn:dx:cat:InvalidListType Invalid list type for the given query

urn:dx:cat:responsePayloadLimitExceeded Search operations exceeds the default response payload limit

urn:dx:cat:requestPayloadLimitExceeded Operation exceeds the default request payload limit

urn:dx:cat:requestOffsetLimitExceeded Operation exceeds the default value of offset

urn:dx:cat:requestLimitExceeded Operation exceeds the default value of limit

https://tools.ietf.org/html/rfc2141

IS 18003 (Part 2) : 2021

41

C-2 AUTHORIZATION SERVICE RESPONSE
URN

Table 90 specifies the recommended API response
URNs for a DX authorization interface.

C-3 RESOURCE ACCESS SERVICE RESPONSE
URN

Table 91 specifies the recommended URNs for a DX
resource access interface.

Table 90 Authorization Service API Response URNs

URN Description

urn:dx:as:Success Successful operation

urn:dx:as:MissingInformation Necessary parameters missing

urn:dx:as:InvalidInput Invalid request param / value

urn:dx:as:InvalidRole User does not have the required role to call the API

urn:dx:as:AlreadyExists If the AS entity to be added or created already exists

urn:dx:as:MissingAuthenticationToken Authentication token required

urn:dx:as:InvalidAuthenticationToken Authentication token is invalid or expired

Table 91 Resource Access Service API Response URNs

URN Description

urn:dx:rs:success Successful operation

urn:dx:rs:InvalidTemporalParam Invalid temporal param for the given query

urn:dx:rs:InvalidTemporalRelationValue Invalid temporal param value for the given query

urn:dx:rs:InvalidTemporalDateFormat Invalid temporal param value date format for the given query

urn:dx:rs:InvalidGeoParam Invalid geo param for the given query

urn:dx:rs:InvalidGeoValue Invalid geo param value for the given query

urn:dx:rs:InvalidAttributeParam Invalid attribute param for the given query

urn:dx:rs:InvalidAttributeValue Invalid attribute param value for the given query

urn:dx:rs:InvalidOperation Operation requested in the endpoint is not permitted

urn:dx:rs:UnauthorizedEndPoint Access to the endpoint is not available

urn:dx:rs:UnauthorizedResource Access to the resource is not available

urn:dx:rs:ExpiredAuthorizationToken Token has expired

urn:dx:rs:MissingAuthorizationToken Token needed and not presented

urn:dx:rs:InvalidAuthorizationToken Token is invalid

urn:dx:rs:ResourceNotFound Document of given id does not exists

urn:dx:rs:MethodNotAllowed Method not allowed for given endpoint

urn:dx:rs:UnsupportedMediaType Requested/Presented media type not supported

urn:dx:rs:responsePayloadLimitExceeded Search operations exceeds the default response payload limit

urn:dx:rs:requestPayloadLimitExceeded Operation exceeds the default request payload limit

urn:dx:rs:requestOffsetLimitExceeded Operation exceeds the default value of offset

urn:dx:rs:requestLimitExceeded Operation exceeds the default value of limit

IS 18003 (Part 2) : 2021

42

ANNEX D

(Clause 4)

DX Usage Examples and Interaction Flows

This annex presents two illustrative interaction flows
that describe interactions between DX interfaces and
DX clients. A consumer flow describes various steps
involved in a DX consumer getting access to data
from an access controlled data resource. A provider
flow describes various steps involved in onboarding a
resource on DX catalogue and setting up of a resource
access policy for that data resource.

D-1 CONSUMER FLOW

This section explains the interaction flow for a DX
consumer who is interested in accessing data from a
given resource. For the purpose of describing this flow,

the following assumptions have been made: (a) DX
consumer has already registered with the data exchange
using AS endpoint ‘/user/profile’ (see Section 7.1.3.1)
with a ‘consumer’ role. (b) Provider of the resource of
interest has already consented to provide access to the
above consumer and has already set policy to allow
data access for the above consumer.

Fig. 3 describes the consumer flow interaction diagram.
A brief explanation is as follows:

D-1.1 Discover Resources

In Step [1] in Fig. 3, the DX consumer uses the
Catalogue Server search endpoint ‘/search’ to discover

Fig. 3 Consumer flow interaction diagram.

IS 18003 (Part 2) : 2021

43

resources of interest. For all the search options and
query semantics see 5.2. As an example, let us consider
that a consumer is looking to identify “air quality”
data resources. The text search feature may be used in

this case. The cURL example to search for resources
providing “air quality” data in DX Catalogue Server is
as shown below.

curl --location -g --request GET ‘https://catalogue.dx.org/iudx/cat/v1/search?q=air%20
quality&property=[type]&value=[[Resource]]’

An example successful response is as follows where
catalogue server returns back with resource items

corresponding to the matching criteria:

{
“type”:”urn:dx:cat:Success ”,
“title”:”Successful Search Query”,
“results”:[
 {
 “id”: “resource-id-xyz-abc”,
 “description”: “Air quality monitoring devices/sensors in XYZ city.” ,
 “itemStatus”: “ACTIVE”,
 “provider”: “urn:cat:4a15c9960ffda227e9546f3f46e629e1fe4132b”,
 “resourceServer”: “urn:cat:27e503da0bdda6efae3a52b3ef423c1f9005657a”,
 …..
 …..
 “resourceType”: “MESSAGESTREAM”,
 }, …….
],
 “totalHits”: 108
}

The CS response contains resource entities that help
consumers get different kinds of meta-information
associated with the resources. Most importantly it
provides consumer applications with the ‘id’ of the
resource which will be used in subsequent interactions,
namely authorization token request and data access
request.

D-1.2 Request Authorization token in the Auth
Server

In Step [4] in Fig. 3, the DX consumer uses AS API
endpoint ‘/tokens’ (see Section 7.1.3.3) to get an
authorization token to access the resource in the
resource server. As an example, let us consider that
the consumer is interested in getting a token for the
resource with id ‘resource-id-xyz-abc’. The cURL
example to get a token from the DX-Auth-Server for
accessing the resource is as shown below.

curl --location --request POST ‘https://authorization.dx.org/auth/v1/token’
--header ‘Content-Type: application/json’
--header ‘Authorization: Basic OTY2NTNmOGUtODBiZS0xMWU2LWIzMmItYzdiY2RlODY2
MTNhOkUtaFJlVk11UnlaYnlyMUdpa2llRXc0SnNsYU02c0RwYjE4XzlWNTlQRnc=’
--data-raw ‘{
 “request”: [
 “resource-id-xyz-abc”
]
}’

https://catalogue.dx.org/iudx/cat/v1/search?q=air%20quality&property=%5btype%5d&value=%5b%5bResource
https://catalogue.dx.org/iudx/cat/v1/search?q=air%20quality&property=%5btype%5d&value=%5b%5bResource
https://authorization.dx.org/auth/v1/token

IS 18003 (Part 2) : 2021

44

As mentioned above, the policy has already been
written to provide access to this consumer by the
provider of this resource. Hence, Step [5] in Fig. 3

will result in a successful response. An example of a
successful response where the AS responds back with
the authorization token is as shown below:

{
“type”: “DX-AS-Token-Success-Resp”,
“title”: “Token generation successful”,
“results”:[
{
 “token”: “eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c”,
 “expiry”: “2021-03-10T12:33:07.740Z”
}]
}

Note that the authorization tokens have an associated
expiry time. Once expired the authorization token
needs to be refreshed using the same endpoint as above.
The token from the above response (Step [6]) should be
used by the consumer to access data for this resource.

D-1.3 Get data for the resource in the Resource
Server

In Step [7] in Fig. 3, the DX consumer uses the RS
endpoint ‘/entities’ to access the data. For all the search
options and query semantics see 6.1. For example, let
us consider that the consumer is interested in obtaining
the latest data published by a resource using the /entities
API (see 6.1.3.1). The cURL example to get the latest
data of a resource, with id ‘resource-id-xyz-abc’, from
the DX-Resource-Server is as shown below:

curl --location --request GET ‘https://rs.dx.org/ngsi-ld/v1/entities/resource-id-xyz-abc’
--header ‘token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c’

The DX Resource Server on receiving this request uses
the DX Auth Server endpoint ‘/tokens/introspect’ to
introspect the token (Step [8]). If the token provided
by the DX Auth Server is a JWT token, then the DX
Resource Server can decode it by itself. Else it shall
use the TIP endpoint: ‘/tokens/introspect’ (see 7.1.3.4)

to decode the token. Based on the TIP response, DX
Resource Server can validate the request (Step [10] in
Fig. 3) as coming from an authorized consumer and if
validation succeeds it then responds back with the data.
An example successful response (Step [11] in Fig. 3) is
as shown below:

{
“type”: “DX-RS-Success-Response-Search”,
“title”: “Search successful”,
“results”:
[
 {
 “id”: “resource-id-xyz-abc”,
 “ambientNoise”: {
 “avgOverTime”: 81.06
 },

https://rs.dx.org/ngsi-ld/v1/entities/resource-id-xyz-abc

IS 18003 (Part 2) : 2021

45

 “observationDateTime”: “2021-06-04T17:01:01+05:30”,
 “pm2p5”: {
 “avgOverTime”: 0.29
 },
 “co”: {
 “avgOverTime”: 0.5
 },
 “deviceStatus”: “ACTIVE”,
 “atmosphericPressure”: {
 “avgOverTime”: 0.93
 },
 “airQualityLevel”: “SATISFACTORY”
 }
],
“totalHits” : 1
}

D-2 PROVIDER FLOW

This section explains the interaction flow for a DX
provider who is interested in onboarding a data resource
and also providing access control for that resource.
For the purpose of describing this flow, the following
assumptions are made:
	 a)	 DX Provider has already registered with the

data exchange using AS endpoint ‘/user/
profile’ (see 7.1.3.1) with a ‘provider’ role.

	 b)	 DX Provider has obtained consent from DX
admin to access DX catalogue server during
resource registration and DX resource server
during data publishing.

Fig. 4 describes the provider flow interaction diagram
and D-2.1 explain various steps listed in Fig. 4.

D-2.1 Register Resources in Catalogue Server

In Step [4] in Fig. 4, the DX provider uses the Catalogue
endpoint ‘/item’ (see 5.2.2.1), to create a resource in
DX Catalogue Server. DX Catalogue endpoint is
accessed using a token obtained from DX Auth Server
using Step [1] to Step [3] which is similar to the
consumer flow described earlier (see section Request
Authorization token in the Auth Server).

The cURL example to register resources in DX
Catalogue Server is as shown below.

curl --location --request POST ‘https://catalogue.dx.org/iudx/cat/v1/item’
--header ‘Content-Type: application/json’
--header ‘token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c’
--data-raw ‘{
 “@context”: “context-url”,
 “name”: “some-name”,
 “type”: [“Resource”],
 “instance”: “name of the instance to which this item belongs”
}’

https://catalogue.dx.org/iudx/cat/v1/item

IS 18003 (Part 2) : 2021

46

Fig. 4: Provider interaction flow diagram

On successful creation of an item the provider will get the following response:

{
 “type”: “urn:dx:cat:Success”,
 “title”:”Resource registered successfully”,
 “results”: [
 {
 “id”: “resource-id-xyz-abc”,
 “method”: “insert”
 }
]
}

IS 18003 (Part 2) : 2021

47

On successful registration, as shown in Step [8] in Fig.
4, the DX Catalogue Server shall respond with the DX
resource ‘id’ which can be used by the DX Provider
to set policies to a DX Consumer. Note that any
subsequent modifications to this catalogue item, i.e.,
with id “resource-id-xyz-abc”, can only be performed
by its provider.

D-2.2 Publish data of the Resource in the Resource
Server

It is to be noted that publishing data of a resource as
explained in Step [10] to Step [17] in Fig. 4 is applicable

only for providers wanting to push data to an external
resource server to host its data resource.

The following example assumes that the DX Provider
is using an external DX Resource Server with the ‘/
entities’ endpoint as described in section B-1 (API
Endpoints for Ingestion).

After successfully obtaining the token from the DX
Auth Server as per Step [10] to Step [12] in Fig. 4, the
DX Provider can use the API as shown in the below
cURL example to publish data into the DX Resource
Server.

curl --location --request POST ‘https://rs.dx.org/ngsi-ld/v1/entities’
--header ‘token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c’
--header ‘Content-Type: application/json’
--data-raw ‘ {
 “id”: “resource-id-xyz-abc”,
 “ambientNoise”: {
 “avgOverTime”: 81.06
 },
 “observationDateTime”: “2021-06-04T17:01:01+05:30”,
 “pm2p5”: {
 “avgOverTime”: 0.29
 },
 “co”: {
 “avgOverTime”: 0.5
 },
 “deviceStatus”: “ACTIVE”,
 “atmosphericPressure”: {
 “avgOverTime”: 0.93
 },
 “airQualityLevel”: “SATISFACTORY”
 }’

An example successful response to a publish operation is as described below:

{
 “type”: “urn:dx:rs:Success”,
 “title”:”Resource published successfully”,
 “results”: [
 {
 “id”: “resource-id-xyz-abc”
 }
]
}

https://rs.dx.org/ngsi-ld/v1/entities

IS 18003 (Part 2) : 2021

48

Optionally, while connecting to an external DX
Resource Server, the DX Provider can also use the
streaming / ingestion API as defined in endpoint:
‘/ingestion’ (see B-1.2) in case it is available in the DX
Resource Server.

D-2.3 Set access policy to a Consumer

In Step [18] in Fig. 4, the DX provider can use the Auth
Server endpoint ‘/policies’ (see Section 7.1.3.2), to set
access policy for a consumer.

The cURL example to set access policy in DX Auth
Server is as shown below.

curl --location --request POST ‘https://authorization.dx.org/auth/v1/policies’
--header ‘Authorization: Basic
OTY2NTNmOGUtODBiZS0xMWU2LWIzMmItYzdiY2RlODY2MTNhOkUtaFJlVk11
UnlaYnlyMUdpa2llRXc0SnNsYU02c0RwYjE4XzlWNTlQRnc=’
--header ‘Content-Type: application/json’
--data-raw ‘{
 “item_id”:”resource-id-xyz-abc”,
 “item_type”:”Resource”,
 “user_id”:”consumer-xyz-abc”
}’

A successful response is as follows:

{
“type”:”DX-AS-Policy-Success-Resp”,
“title”:”Policy created successfully”
}

On successful validation as shown in Step [19] in Fig.
4, the DX Authorisation Server shall send a successful
response as shown above.

https://authorization.dx.org/auth/v1/policies

IS 18003 (Part 2) : 2021

49

ANNEX E

(Clause 4)

DX EXAMPLE USE CASES

This annex provides brief descriptions of some use
cases that are enabled by the Data Exchange layer
using typical data sets available in urban scenarios. A
key commonality across the described use case is that
these are based on diverse data sets that are typically

available with multiple providers/departments/
agencies. Enabling use cases that use such diverse
datasets is one of the key benefits of the data exchange
layer.

Use Case 1: Solid Waste vehicle routes optimisation

Description Based on the waste volume, crowd sourced data from Citizen engagement app,
adaptive traffic management information etc, dynamically route the solid waste trucks
for operational efficiency and to pick up waste faster for higher citizen satisfaction
and cleaner city.

Datasets from Data
Exchange

Waste volume data, GPS Locations of the solid waste management vehicles, Adaptive
traffic information, Crowd sourced data from Citizen engagement apps, Maps,
Navigation data, Bin locations, live/historical bin filling data etc.

Use Case 2: Bus occupancy information with Estimated Time of Arrival (ETA) and fleet optimisations

Description Improve the ETA accuracy using the real time traffic info to help the bus operator,
such as with inputs for dynamic rescheduling, operational efficiency etc., and also the
commuter, such as with inputs on whether to wait for the bus or not, seat availability
etc.

Datasets from Data
Exchange

Live GPS Locations of all Buses, Routes, Stops, Trip Schedules, Ticket Information
between Active stops (AFCS data), Live traffic/congestion information etc.

Use Case 3: Safe and pollution free route to travel in the city

Description Based on the city safety parameters, pollutant concentrations grade the safety index
for the streets/places and suggest the safe route for the travel

Datasets from Data
Exchange

Location wise reported crime data with categories,
Surveillance camera feeds, Street light locations/status, Air Quality Monitoring data,
Number of people on the streets (Citizen app/Telecom data), Crowd sourced “feeling”
data, Maps, Land use data etc.

Use Case 4: Flood Prediction

Description Based on the past/present flood sensor data, information about water released from
Dams/Lakes, weather data data for rainfall, predict and inform the upcoming flood to
the citizens and disaster management authorities.

Datasets from Data
Exchange

Flood Sensor data, Video analytics of camera feeds for flood locations,, Citizen App
for the GPS coordinates of the users, Telecom data for approximate people in the
area, Historical Rainfall/Flooding, Dam/Lake water release data, PA system/Siren/
Sign board locations, Map data including rivers, canals, drains etc.

IS 18003 (Part 2) : 2021

50

Use Case 5: Safer places to visit during a pandemic

Description Visualize safe routes and places in real-time which can minimize exposure to the virus
by scoring each place/route using geospatial data of the positive cases, containment
zone polygons, movement and crowd stats using telecom datasets and ward-wise
population data. This will help the citizens, administrators and the police to make
informed decisions.

Datasets from Data
Exchange

Geospatial real-time data of the active cases, containment zone polygons, land use
data (offices, schools, markets, shops, malls polygons), crowding and movement of
people from telecom data, ward wise population data etc.

Use Case 6: Multimodal transport application

Description Takes the data from multiple transport sources, walk paths, Safety indexes, personal
preferences and suggests the Best Mode of Transport for the travel against the
commuter to open multiple apps for the same.

Datasets from Data
Exchange

Rail, Metro, Bus, BRTS, Taxi, RideShare, E-bike, Walk paths, Maps, Routes,
Navigation data, Air Quality Monitoring, Safety index of places etc.

Use Case 7: Traffic Analysis and Improvements

Description Use the traffic violations/accidents data, adaptive traffic data, other traffic information,
road network information and provide comprehensive data based recommendations
such as light durations, one way traffic etc.

 Traffic violation data including the location and category of violations, Adaptive
traffic information, Traffic accident information, Other Live traffic incident info (such
as Tom-Tom data), Junction ITMS camera data, Road network information, Maps etc.

IS 18003 (Part 2) : 2021

51

ANNEX F
(Foreword)

COMMITTEE COMPOSITION

Smart Infrastructure Sectional Committee, LITD 28

Organization Representative(s)

Indian Institute of Science, Bengaluru Prof Bharadwaj Amrutur (Chairman)

Standardization Testing and Quality Certification
(STQC)

Ms Lipika Kaushik

Shrama Technologies Pvt Ltd, Bengaluru Mr Amarjeet Kumar

Treasure Data Mr Kumaar Guhan

Amravati Smart City Development Corporation
Limited, Mumbai

Mr Siddharth Ganesh

Centre for Development of Telematics, New Delhi Mr Aurindam Bhattacharya
Ms Anupama Chopra (Alternate)

Criterion Network Labs, Bengaluru Mr Jayaprakash Kumar
Mr Krishna Kumar Lohati (Alternate)

CyanConnode Private Limited, Bengaluru Mr Manish Widhani
Mr Deepak Nimare (Alternate)

ERNET India, New Delhi Mr Paventhan Arumugam

Ericsson India Private Limited, Gurugram Mr Sendil Kumar Devar

Esri India Technologies Private Limited, Noida Ms Seema Joshi
Vijay kumar (Alternate)

Hewlett Packard Enterprise Mr Devarajan R.
Manukumar Nair (Alternate)

IEEE India, Bengaluru Mr Srikanth Chandrasekaran
Mr Munir Mohammed (Alternate)

India Smart Grid Forum, New Delhi Mr Reji Kumar Pillai
Ms Parul Shribatham (Alternate)

Indian Institute of Science, Bengaluru Mr Vasanth Rajaraman

Intel Technology India Private Limited, Bengaluru Mr C. Subramanian
Mr Anantha Narayanan (Alternate I)
Mr Sidhartha Mohanty (Alternate II)

Ministry of Housing and Urban Affairs, New Delhi Kunal Kumar
Mr Padam Vijay (Alternate)

Narnix Technolabs Private Limited, New Delhi Mr N. Kishor Narang

National Institute of Urban Affairs, New Delhi Ms Lavanya Nupur

National Smart Grid Mission, Ministry of Power,
Gurugram

Mr Arun Misra
Smt Kumud Wadhwa (Alternate I)
Mr Gyan Prakash (Alternate II)

PHYTEC Embedded Private Limited, Bengaluru B. Vallab Rao

Qualcomm India Private Limited, Bengaluru Dr Vinosh Babu James
Dr Punit Rathod (Alternate)

Renesas Electronics, Bengaluru Ravindra Chaturvedi
Saurabh Goswami (Alternate)

IS 18003 (Part 2) : 2021

52

Organization Representative(s)

Schneider Electric’s industrial software business -
AVEVA, Mumbai

Mr Gourav Kumar Hada

SESEI, New Delhi Mr Dinesh Chand Sharma

Secure Meters Limited, Gurugram Mr Uttam Kotdiya
Mr Kaustubh Patil (Alternate I)
Mr Puneet khurana (Alternate II)
Mr Anil Mehta (Alternate III)

Senra Tech Private Limited, New Delhi Dhiraj Kumar
Ankush Kochhar (Alternate)

Siemens Limited, Mumbai Mr Manoj Belgaonkar
Mr Ravi Madipadga (Alternate I)
Mr Pradeep Kapoor (Alternate II)
Mr Vikram Gandotra (Alternate III)

System Level Solutions (India) Private Limited, Anand Mr Dipen Parmar
Mr Foram Modi (Alternate)

Tata Consultancy Services Limited, Mumbai Mr Ramesh Balaji
Mr Debashis Mitra (Alternate)

Tata Consulting Engineers Limited, Navi Mumbai Mr Jagdish Shivraj Shige
Mr Manoj Kumar (Alternate)

Tejas Networks Limited, Bengaluru Dr Kanwar Jit Singh

Telecommunication Engineering Center, New Delhi Mr Rajeev Kumar Tyagi
Mr Sushil Kumar (Alternate I)
Mr Uttam Chand (Alternate II)

eGovernments Foundation, Bengaluru Mr Krishnakumar Thiagarajan

In personal capacity Mr Anish P. K.

In personal capacity Prof Suptendranath Sarbadhikari

BIS Director General Ms Reena Garg, Scientist ‘F’ and Head (Electronics and IT)
[Representing Director General (Ex-officio)]

Member Secretary
Mr Manikandan K.

Scientist ‘D’ (Electronics and IT), BIS

IS 18003 (Part 2) : 2021

53

Panel involved in the Finalization - LITD 28/P12 Data Exchange Architecture

Organization Representative(s)

IUDX Program Unit, IISc, Bengaluru Dr Abhay Sharma (Convener)

IUDX Program Unit, IISc, Bengaluru Mr Vasanth Rajaraman

IUDX Program Unit, IISc, Bengaluru Mr Rakshit Ramesh

IUDX Program Unit, IISc, Bengaluru Mr Mahidhar Chellamani

IUDX Program Unit, IISc, Bengaluru Mr Bryan Paul Robert

FIWARE Foundation Mr Chandra Challagonda

IIIT-Bangalore Mr Dr Srinath Srinivasa

IIIT-Hyderabad Ms Anuradha Vattem

Microsoft India Pvt Ltd Mr Rajesh Kumar

Microsoft India Pvt Ltd Mr Shalina Bhatia

National Institute of Urban Affairs, New Delhi Ms Lavanya Nupur

NEC India Mr Anand Sahu

Redhat India Pvt Ltd Mr Vinay G Rajagopal

Siemens Limited, Mumbai Mr Sabishaw Bhaskaran

TCS Research Sandeep Saxena

Other contributors from IUDX Program Unit,
IISc, Bengaluru

Mr C. Subramanian,
Mr Anas A.
Prof Bharadwaj Amrutur
Mr Poorna Chandra Tejasvi

Dr Arun Babu

Mr Chetan Kumar

Mr Kapil Vaswani

Mr Anand Lakshmanan

IS 18003 (Part 2) : 2021

54

BIBLIOGRAPHY

	 1.	 OpenID Connect Core 1.0, Available at https://openid.net/specs/openid-connect-core-1_0.html
	 2.	 IETF RFC 6749: The OAuth 2.0 Authorization Framework. Available at https://tools.ietf.org/html/

rfc6749
	 3.	 IETF RFC 6749: The OAuth 2.0 Authorization Framework: The Bearer Token Usage. Available at:

https://tools.ietf.org/html/rfc6750.
	 4.	 ETF RFC 7519: JSON Web Token (JWT). Available at: https://tools.ietf.org/html/rfc7519
	 5.	 MQTT 5.0, OASIS Standard. Available at https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
	 6.	 Advanced Message Queuing Protocol (AMQP): v0.9.1. Available at: https://www.amqp.org/

specification/0-9-1/amqp-org-download
	 7.	 JSON Schema. Available at: https://json-schema.org/
	 8.	 IETF RFC 7396: “JSON Merge Patch”. Available at https://tools.ietf.org/html/rfc7396.
	 9.	 Linked Data. Tim Berners-Lee. Personal View, imperfect but published. Available at: http://www.w3.org/

DesignIssues/LinkedData.html
	 10.	 IETF RFC 7522: Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client

Authentication and Authorization Grants. Available at: https://tools.ietf.org/html/rfc7522
	 11.	 IETF RFC 3987: Internationalized Resource Identifiers (IRIs). Available at: https://tools.ietf.org/html/

rfc3987
	 12.	 OWASP API Security Project. Available at: https://owasp.org/www-project-api-security/
	 13.	 NIST SP 800-204, Security Strategies for Micro-services based application systems. Available at: https://

nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf
	 14.	 OpenAPI Specification. Available at: https://swagger.io/specification/

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.amqp.org/specification/0-9-1/amqp-org-download
https://www.amqp.org/specification/0-9-1/amqp-org-download
https://json-schema.org/
https://tools.ietf.org/html/rfc7396
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://owasp.org/www-project-api-security/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204.pdf
https://swagger.io/specification/

This page has been intentionally left blank

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 2016 to promote harmonious
development of the activities of standardization, marking and quality certification of goods and attending to
connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without
the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the
standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to
copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed
periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are
needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards
should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of
‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc No.: LITD 28 (17249).

Amendments Issued Since Publication

Amend No. Date of Issue Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

Regional Offices: Telephones

Central : �Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002 { 2323 7617

2323 3841

Eastern : �1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054 { 2337 8499, 2337 8561

2337 8626, 2337 9120

Northern : �Plot No. 4-A, Sector 27-B, Madhya Marg
CHANDIGARH 160019 { 265 0206

265 0290

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113 { 2254 1216, 2254 1442
2254 2519, 2254 2315

Western : �Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093 { 2832 9295, 2832 7858

2832 7891, 2832 7892

Branches : �AHMEDABAD. BENGALURU. BHOPAL. BHUBANESHWAR. COIMBATORE.
DEHRADUN. DURGAPUR. FARIDABAD. GHAZIABAD. GUWAHATI.
HYDERABAD. JAIPUR. JAMMU. JAMSHEDPUR. KOCHI. LUCKNOW.
NAGPUR. PARWANOO. PATNA. PUNE. RAIPUR. RAJKOT. VISAKHAPATNAM.

Published by BIS, New Delhi

http://www.bis.gov.in

	Title page
	FOREWORD
	0 INTRODUCTION
	1 SCOPE
	2 REFERENCES
	3 TERMINOLOGY AND ABBREVIATIONS
	3.1 Terminology
	Table 1 Definition of key terms used in this document

	3.2 Abbreviations
	Table 2 List of bbreviations used in this document

	4 Data Exchange API Interfaces
	Fig. 1 Data Exchange Reference Architecture
	Table 3 Data Exchange Interfaces and APIs for Catalogue Service
	Table 4 Data Exchange Interfaces and APIs for Resource Access Service
	Table 5 Data Exchange Interfaces and APIs for Authorization Service

	5 Catalogue Service Interface
	5.1 Catalogue Information Model
	5.1.1 General
	5.1.2 Catalogue Items and Item Types
	5.1.3 Relationship between catalogue item types
	5.1.4 Catalogue data types

	Table 6 Data Types Used in Catalogue
	5.1.5 Schemas for DX catalogue item types
	5.1.6 Representation of catalogue entities

	Fig. 2 Relationship between various catalogue items

	Table 7 Properties of Iem of type ‘Resource’
	Table 8 Properties of item of type ‘ResourceGroup’
	Table 9 Properties of item of type ‘Provider’
	Table 10 Properties of item of type ‘ResourceServer’

	5.2 DX Catalogue APIs
	5.2.1 General
	5.2.1.1 Discovery interface
	5.2.1.1.1 Attribute/Property Search
	5.2.1.1.2 Geo-spatial search
	5.2.1.1.3 Text search
	5.2.1.1.4 Get Document by ID
	5.2.1.1.5 List based on type
	5.2.1.1.6 Relationship search based on relationship type
	5.2.1.2 Management Interface
	5.2.1.2.1 Create Item
	5.2.1.2.2 Update Item
	5.2.1.2.3 Delete Item
	5.2.1.2.4 Get Item
	5.2.2 API Endpoints

	5.2.2.1 API Endpoint: /item

	Table 11 Parameters and Status codes
for Create item
	Table 12 Parameters and Status codes
for Update item
	Table 13 Parameters and Status codes
for Delete item
	Table 14 Parameters and Status codes
for Get item
	5.2.2.1.1 API Response

	Table 15 Response codes for API endpoint /item
	5.2.2.2 API Endpoint: /search

	Table 16 Parameters and Status codes
for Property Search
	Table 17 Parameters and Status codes
for Geo-spatial Search
	Table 18 Parameters and Status codes
for Fuzzy Text Search
	5.2.2.2.1 API Response

	Table 19 Response codes for API endpoint /search
	5.2.2.3 API Endpoint: /list

	Table 20 Parameters and Status codes for List item
	5.2.2.3.1 API Response

	Table 21 Response codes for API endpoint/list
	5.2.2.4 API Endpoint: /relationship

	Table 22 Parameters and Status codes for Relationship search
	5.2.2.4.1 API Response

	Table 23 Response codes for API endpoint /relationship
	5.2.3 API Authorization
	5.2.4 Query Semantics and API Parameters

	5.2.4.1 Property Search Semantics and Parameters
	5.2.4.2 Geo-spatial Search Query Semantics and Parameters

	Table 24 Supported combinations for entity types and relationships in relationship search
	5.2.4.3 Fuzzy Text Search Semantics and Parameters
	5.2.4.4 Complex Search Semantics and Parameters
	5.2.4.5 List Entities Semantics and Parameters
	5.2.4.6 Relationship Query Semantics and Parameters
	5.2.4.7 Limits and Filters
	5.2.5 DX-CAT Object Definitions

	5.2.5.1 DX-CAT-Success-Response-Search

	Table 25 Catalogue search response attributes
	5.2.5.2 DX-CAT-Success-Response-List
	5.2.5.3 DX-CAT-Success-Response-Create-Update-Delete

	Table 26 Catalogue list response attributes
	Table 27 Catalogue Create, Update, Delete response attributes
	5.2.5.3.1 DX-CAT-Manage-Response

	Table 28 Catalogue management API response attributes

	6 Resource Access Service Interface
	6.1 Resource Access APIs
	6.1.1 General
	6.1.2 Functionality
	6.1.2.1 Latest Data Search
	6.1.2.2 Temporal Search
	6.1.2.3 Spatial Search
	6.1.2.4 Attribute Search
	6.1.2.5 Complex Search
	6.1.2.6 Filters
	6.1.2.8 Data Ingestion
	6.1.3 API Endpoints

	6.1.3.1 API Endpoint: /entities

	Table 29 Parameters and Status codes
for latest data search
	Table 30 Parameters and Status codes
for geo-spatial search
	Table 31 Parameters and Status codes
for attribute search
	6.1.3.1.1 API Response

	Table 32 Response codes for Resource Access Service API endpoint /entities
	6.1.3.2 API Endpoint: /temporal/entities

	Table 33 Parameters and Status codes
for Temporal search
	6.1.3.2.1 API Response

	Table 34 Response codes for Resource Access Service API endpoint/temporal/entities
	6.1.3.3 API Endpoint: /entityOperations/query

	Table 35 Parameters and Status codes
for POST based search
	6.1.3.3.1 API Response

	Table 36 Response codes for Resource Access Service API endpoint /entityOperations/query
	6.1.3.4 API Endpoint: /temporal/entityOperations/query

	Table 37 Parameters and Status codes
for POST based temporal search
	6.1.3.4.1 API Response

	Table 38 Response codes for API endpoint /temporal/entityOperations/query
	6.1.3.5 API Endpoint: /subscriptions

	Table 41 Response codes for Resource Access Service API endpoint /subscription
	Table 42 Resource Access Service /subscription API response codes
	Table 39 Parameters and Status codes for subscription registration, update and append
	Table 40 Parameters and Status codes for listing and deleting resources in subscription
	6.1.3.5.1 API parameters
	6.1.3.5.2 API Response
	6.1.4 Query Semantics and API Parameters

	6.1.4.1 Geo-spatial Search
	6.1.4.2 Temporal Search
	6.1.4.3 Attribute Search
	6.1.4.4 Complex Search
	6.1.4.5 Response Filtering
	6.1.4.6 Query pagination
	6.1.4.7 Counting the Number of Results
	6.1.4.8 API parameters
	6.1.5 DX-RS Object definitions

	Table 43 Attribute search query template
	Table 44 Resource Access Service API parameters
	6.1.5.1 DX-RS-Success-Response-Search

	Table 45 Response payload schema for successful Resource Access Service search query
	6.1.5.2 DX-RS-Success-Response-Delete

	Table 46 Response payload schema for successful Resource Access Service subscription delete operation
	6.1.5.3 DX-RS-Success-Response-Subscription

	Table 47 Response payload schema for successful Resource Access Service subscription
create/modify operation
	6.1.5.4 DX-RS Error-Response

	Table 48 Response payload schema for Resource Access Service error response
	6.1.5.5 DX-RS-ReqBody-Search

	Table 49 Request payload schema for API endpoint /entityOperations
	6.1.5.6 DX-RS-ReqBody-Subscription

	Table 50 Request payload schema for API endpoint /subscription
	6.1.5.7 DX-RS-Subscription-Params

	Table 51 Request payload schema for update operation for endpoint /subscription

	7 Authorization Service Interface
	7.1 Authorization Service APIs
	7.1.1 General
	7.1.1.1 User Profile
	7.1.1.2 Policy
	7.1.1.3 Authorization Token
	7.1.2 Authorization Service Object Definitions

	7.1.2.1 DX-AS-UserProfile-Entity

	Table 52 UserProfile entity attributes
	7.1.2.2 DX-AS-Policy-Entity

	Table 53 Policy entity attributes
	7.1.2.3 DX-AS-Token-Entity

	Table 54 Token entity attributes
	7.1.2.4 DX-AS-TIP-Req

	Table 55 Request payload schema for Token introspection
	7.1.2.5 DX-AS-UserProfile-Success-Resp

	Table 56 Response payload schema for successful UserProfile operation
	7.1.2.6 DX-AS-Policy-Success-Resp

	Table 57 Response payload schema for successful Policy operation
	7.1.2.7 DX-AS-Token-Success-Resp

	Table 58 Response payload schema for successful Token operation
	7.1.2.8 DX-AS-Error-Response

	Table 59 Response payload schema for AS Error response
	7.1.2.9 DX-AS-TIP-Success-Response

	Table 60 Response payload schema for successful Token introspection operation
	Table 61 Delete method success response entity attributes
	7.1.3 API Specifications
	7.1.3.1 Endpoint: /user/profile
	7.1.3.1.1 Create/Update User Profile

	Table 62 Parameters and Status codes for user profile creation/updation
	Table 63 Response codes for POST/PUT methods for API endpoint /user/profile
	7.1.3.1.2 Read User Profile

	Table 64 Parameters and Status codes
for user profile read
	7.1.3.1.2.1 API Responses

	Table 65 Response codes for GET method for API endpoint /user/profile
	7.1.3.2 Endpoint: /policies
	7.1.3.2.1 Create/Update Policies

	Table 66 Parameters and Status codes
for policy creation/updation
	7.1.3.2.1.1 API Responses

	Table 67 Response codes for POST/PUT
methods for API endpoint /policies
	7.1.3.2.2 Read Policies

	Table 68 Parameters and Status codes
for policy read
	7.1.3.2.2.1 API Responses

	Table 69 Response codes for GET method
for API endpoint /policies
	7.1.3.2.3 Delete Policies

	Table 70 Parameters and Status codes for policy deletion
	7.1.3.2.3.1 API Responses

	Table 71 Response codes for DELETE method for API endpoint /policies
	7.1.3.3 Endpoint: /tokens
	7.1.3.3.1 Create Method: POST

	Table 72 Parameters and Status codes for authorization token generation
	Table 73 Response codes for POST method
for API endpoint /tokens
	7.1.3.3.2 Read Method: GET

	Table 74 Response codes for READ method
for API endpoint /tokens
	7.1.3.3.3 Update Method: PUT

	Table 75 Parameters and Status codes for authorization token updation
	7.1.3.3.3.1 API Responses

	Table 76 Response codes for PUT method for API endpoint /tokens
	7.1.3.3.4 Delete Method: DELETE

	Table 77 Parameters and Status codes for authorization token deletion
	7.1.3.3.4.1 API Responses

	Table 78 Response codes for DELETE operation for API endpoint /tokens
	7.1.3.4 Endpoint: /tokens/introspect
	7.1.3.4.1 Introspect Method: POST

	Table 79 Response codes for POST method for API endpoint /tokens/introspect

	8 Common Behaviours
	8.1 Common API Response Template
	8.3.1 HTTP over TLS
	8.3.2 Input Validation
	8.3.3 Request/Response Payload Size Limitations
	8.3.4 General Recommendations

	Table 80 Base URL Components

	Annex A
	Example Catalogue Items

	A-1 Examples of catalogue Items in JSON format
	A-2 Representation of catalogue items using JSON-LD format
	Annex B
	Resource Server Data Ingestion

	B-1 API Endpoints for Ingestion
	B-1.1 Endpoint: /entities
	Table 81 Parameters and Status codes
for Publish Data
	B-1.1.1 API Response

	B-1.2 API Endpoint: /ingestion
	Table 82 Response codes for POST method for Resource Access Service API endpoint /entities
	Table 83 Parameters and Status codes
for ingestion registration
	Table 84 Parameters and Status codes for listing and deleting resources in ingestion
	B-1.2.1 API parameters

	Table 85 API parameters for Resource Access Service API endpoint /ingestion
	B-1.2.2 API Response

	Table 86 Response codes for Resource Access Service API endpoint /ingestion

	B-1.3 Input validation

	B-2 Object definitions for Ingestion APIs
	B-2.1 DX-RS-ReqBody-Ingestion
	Table 87 Request payload schema for Resource Access Service API endpoint /ingestion

	B-2.2 DX-RS-Ingestion-Params
	Table 88 Request payload schema for update operation for endpoint /ingestion
	Table 89 Catalogue Service API Response URNs

	Annex C
	DX Response Codes

	C-1 Catalogue Service response URN
	Table 90 Authorization Service API Response URNs
	Table 91 Resource Access Service API Response URNs

	C-2 Authorization Service response URN
	C-3 Resource Access Service response URN
	Fig. 3 Consumer flow interaction diagram.

	Annex D
	DX Usage Examples and Interaction Flows

	D-1 Consumer Flow
	D-1.1 Discover Resources
	D-1.2 Request Authorization token in the Auth Server
	D-1.3 Get data for the resource in the Resource Server

	D-2 Provider Flow
	D-2.1 Register Resources in Catalogue Server
	Fig. 4: Provider interaction flow diagram

	D-2.2 Publish data of the Resource in the Resource Server
	D-2.3 Set access policy to a Consumer

	Annex E
	DX Example use cases

	ANNEX F
	Committee composition

	Bibliography

